Get a weekly rundown of the latest AI models and research... subscribe! https://aimodels.substack.com/

AI Papers

Browse and discover the latest research papers on artificial intelligence, machine learning, and related fields.

Wu's Method can Boost Symbolic AI to Rival Silver Medalists and AlphaGeometry to Outperform Gold Medalists at IMO Geometry

Wu's Method can Boost Symbolic AI to Rival Silver Medalists and AlphaGeometry to Outperform Gold Medalists at IMO Geometry

Shiven Sinha, Ameya Prabhu, Ponnurangam Kumaraguru, Siddharth Bhat, Matthias Bethge

YC

7

Reddit

404

Proving geometric theorems constitutes a hallmark of visual reasoning combining both intuitive and logical skills. Therefore, automated theorem proving of Olympiad-level geometry problems is considered a notable milestone in human-level automated reasoning. The introduction of AlphaGeometry, a neuro-symbolic model trained with 100 million synthetic samples, marked a major breakthrough. It solved 25 of 30 International Mathematical Olympiad (IMO) problems whereas the reported baseline based on Wu's method solved only ten. In this note, we revisit the IMO-AG-30 Challenge introduced with AlphaGeometry, and find that Wu's method is surprisingly strong. Wu's method alone can solve 15 problems, and some of them are not solved by any of the other methods. This leads to two key findings: (i) Combining Wu's method with the classic synthetic methods of deductive databases and angle, ratio, and distance chasing solves 21 out of 30 methods by just using a CPU-only laptop with a time limit of 5 minutes per problem. Essentially, this classic method solves just 4 problems less than AlphaGeometry and establishes the first fully symbolic baseline strong enough to rival the performance of an IMO silver medalist. (ii) Wu's method even solves 2 of the 5 problems that AlphaGeometry failed to solve. Thus, by combining AlphaGeometry with Wu's method we set a new state-of-the-art for automated theorem proving on IMO-AG-30, solving 27 out of 30 problems, the first AI method which outperforms an IMO gold medalist.

Read more

4/12/2024

🏋️

The Curse of Recursion: Training on Generated Data Makes Models Forget

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, Ross Anderson

YC

170

Reddit

0

Stable Diffusion revolutionised image creation from descriptive text. GPT-2, GPT-3(.5) and GPT-4 demonstrated astonishing performance across a variety of language tasks. ChatGPT introduced such language models to the general public. It is now clear that large language models (LLMs) are here to stay, and will bring about drastic change in the whole ecosystem of online text and images. In this paper we consider what the future might hold. What will happen to GPT-{n} once LLMs contribute much of the language found online? We find that use of model-generated content in training causes irreversible defects in the resulting models, where tails of the original content distribution disappear. We refer to this effect as Model Collapse and show that it can occur in Variational Autoencoders, Gaussian Mixture Models and LLMs. We build theoretical intuition behind the phenomenon and portray its ubiquity amongst all learned generative models. We demonstrate that it has to be taken seriously if we are to sustain the benefits of training from large-scale data scraped from the web. Indeed, the value of data collected about genuine human interactions with systems will be increasingly valuable in the presence of content generated by LLMs in data crawled from the Internet.

Read more

4/16/2024

Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length

Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke Zettlemoyer, Omer Levy, Chunting Zhou

YC

158

Reddit

0

The quadratic complexity and weak length extrapolation of Transformers limits their ability to scale to long sequences, and while sub-quadratic solutions like linear attention and state space models exist, they empirically underperform Transformers in pretraining efficiency and downstream task accuracy. We introduce Megalodon, a neural architecture for efficient sequence modeling with unlimited context length. Megalodon inherits the architecture of Mega (exponential moving average with gated attention), and further introduces multiple technical components to improve its capability and stability, including complex exponential moving average (CEMA), timestep normalization layer, normalized attention mechanism and pre-norm with two-hop residual configuration. In a controlled head-to-head comparison with Llama2, Megalodon achieves better efficiency than Transformer in the scale of 7 billion parameters and 2 trillion training tokens. Megalodon reaches a training loss of 1.70, landing mid-way between Llama2-7B (1.75) and 13B (1.67). Code: https://github.com/XuezheMax/megalodon

Read more

4/17/2024

No Zero-Shot Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance

No Zero-Shot Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance

Vishaal Udandarao, Ameya Prabhu, Adhiraj Ghosh, Yash Sharma, Philip H. S. Torr, Adel Bibi, Samuel Albanie, Matthias Bethge

YC

2

Reddit

316

Web-crawled pretraining datasets underlie the impressive zero-shot evaluation performance of multimodal models, such as CLIP for classification/retrieval and Stable-Diffusion for image generation. However, it is unclear how meaningful the notion of zero-shot generalization is for such multimodal models, as it is not known to what extent their pretraining datasets encompass the downstream concepts targeted for during zero-shot evaluation. In this work, we ask: How is the performance of multimodal models on downstream concepts influenced by the frequency of these concepts in their pretraining datasets? We comprehensively investigate this question across 34 models and five standard pretraining datasets (CC-3M, CC-12M, YFCC-15M, LAION-400M, LAION-Aesthetics), generating over 300GB of data artifacts. We consistently find that, far from exhibiting zero-shot generalization, multimodal models require exponentially more data to achieve linear improvements in downstream zero-shot performance, following a sample inefficient log-linear scaling trend. This trend persists even when controlling for sample-level similarity between pretraining and downstream datasets, and testing on purely synthetic data distributions. Furthermore, upon benchmarking models on long-tailed data sampled based on our analysis, we demonstrate that multimodal models across the board perform poorly. We contribute this long-tail test set as the Let it Wag! benchmark to further research in this direction. Taken together, our study reveals an exponential need for training data which implies that the key to zero-shot generalization capabilities under large-scale training paradigms remains to be found.

Read more

4/11/2024

🛸

ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, Sung Ju Hwang

YC

123

Reddit

0

Scientific Research, vital for improving human life, is hindered by its inherent complexity, slow pace, and the need for specialized experts. To enhance its productivity, we propose a ResearchAgent, a large language model-powered research idea writing agent, which automatically generates problems, methods, and experiment designs while iteratively refining them based on scientific literature. Specifically, starting with a core paper as the primary focus to generate ideas, our ResearchAgent is augmented not only with relevant publications through connecting information over an academic graph but also entities retrieved from an entity-centric knowledge store based on their underlying concepts, mined and shared across numerous papers. In addition, mirroring the human approach to iteratively improving ideas with peer discussions, we leverage multiple ReviewingAgents that provide reviews and feedback iteratively. Further, they are instantiated with human preference-aligned large language models whose criteria for evaluation are derived from actual human judgments. We experimentally validate our ResearchAgent on scientific publications across multiple disciplines, showcasing its effectiveness in generating novel, clear, and valid research ideas based on human and model-based evaluation results.

Read more

4/12/2024

From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples

From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples

Robert Vacareanu, Vlad-Andrei Negru, Vasile Suciu, Mihai Surdeanu

YC

119

Reddit

1

We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.

Read more

4/12/2024

💬

Large Language Models as Optimizers

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen

YC

95

Reddit

0

Optimization is ubiquitous. While derivative-based algorithms have been powerful tools for various problems, the absence of gradient imposes challenges on many real-world applications. In this work, we propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as optimizers, where the optimization task is described in natural language. In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values, then the new solutions are evaluated and added to the prompt for the next optimization step. We first showcase OPRO on linear regression and traveling salesman problems, then move on to our main application in prompt optimization, where the goal is to find instructions that maximize the task accuracy. With a variety of LLMs, we demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks. Code at https://github.com/google-deepmind/opro.

Read more

4/16/2024

Octopus v2: On-device language model for super agent

Octopus v2: On-device language model for super agent

Wei Chen, Zhiyuan Li

YC

91

Reddit

1

Language models have shown effectiveness in a variety of software applications, particularly in tasks related to automatic workflow. These models possess the crucial ability to call functions, which is essential in creating AI agents. Despite the high performance of large-scale language models in cloud environments, they are often associated with concerns over privacy and cost. Current on-device models for function calling face issues with latency and accuracy. Our research presents a new method that empowers an on-device model with 2 billion parameters to surpass the performance of GPT-4 in both accuracy and latency, and decrease the context length by 95%. When compared to Llama-7B with a RAG-based function calling mechanism, our method enhances latency by 35-fold. This method reduces the latency to levels deemed suitable for deployment across a variety of edge devices in production environments, aligning with the performance requisites for real-world applications.

Read more

4/17/2024

TransformerFAM: Feedback attention is working memory

TransformerFAM: Feedback attention is working memory

Dongseong Hwang, Weiran Wang, Zhuoyuan Huo, Khe Chai Sim, Pedro Moreno Mengibar

YC

4

Reddit

98

While Transformers have revolutionized deep learning, their quadratic attention complexity hinders their ability to process infinitely long inputs. We propose Feedback Attention Memory (FAM), a novel Transformer architecture that leverages a feedback loop to enable the network to attend to its own latent representations. This design fosters the emergence of working memory within the Transformer, allowing it to process indefinitely long sequences. TransformerFAM requires no additional weights, enabling seamless integration with pre-trained models. Our experiments show that TransformerFAM significantly improves Transformer performance on long-context tasks across various model sizes (1B, 8B, and 24B). These results showcase the potential to empower Large Language Models (LLMs) to process sequences of unlimited length.

Read more

4/16/2024

Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

Tsendsuren Munkhdalai, Manaal Faruqui, Siddharth Gopal

YC

38

Reddit

0

This work introduces an efficient method to scale Transformer-based Large Language Models (LLMs) to infinitely long inputs with bounded memory and computation. A key component in our proposed approach is a new attention technique dubbed Infini-attention. The Infini-attention incorporates a compressive memory into the vanilla attention mechanism and builds in both masked local attention and long-term linear attention mechanisms in a single Transformer block. We demonstrate the effectiveness of our approach on long-context language modeling benchmarks, 1M sequence length passkey context block retrieval and 500K length book summarization tasks with 1B and 8B LLMs. Our approach introduces minimal bounded memory parameters and enables fast streaming inference for LLMs.

Read more

4/11/2024

ChatGPT Can Predict the Future when it Tells Stories Set in the Future About the Past

ChatGPT Can Predict the Future when it Tells Stories Set in the Future About the Past

Van Pham, Scott Cunningham

YC

29

Reddit

0

This study investigates whether OpenAI's ChatGPT-3.5 and ChatGPT-4 can accurately forecast future events using two distinct prompting strategies. To evaluate the accuracy of the predictions, we take advantage of the fact that the training data at the time of experiment stopped at September 2021, and ask about events that happened in 2022 using ChatGPT-3.5 and ChatGPT-4. We employed two prompting strategies: direct prediction and what we call future narratives which ask ChatGPT to tell fictional stories set in the future with characters that share events that have happened to them, but after ChatGPT's training data had been collected. Concentrating on events in 2022, we prompted ChatGPT to engage in storytelling, particularly within economic contexts. After analyzing 100 prompts, we discovered that future narrative prompts significantly enhanced ChatGPT-4's forecasting accuracy. This was especially evident in its predictions of major Academy Award winners as well as economic trends, the latter inferred from scenarios where the model impersonated public figures like the Federal Reserve Chair, Jerome Powell. These findings indicate that narrative prompts leverage the models' capacity for hallucinatory narrative construction, facilitating more effective data synthesis and extrapolation than straightforward predictions. Our research reveals new aspects of LLMs' predictive capabilities and suggests potential future applications in analytical contexts.

Read more

4/16/2024

👀

Vision Transformers Need Registers

Timoth'ee Darcet, Maxime Oquab, Julien Mairal, Piotr Bojanowski

YC

22

Reddit

0

Transformers have recently emerged as a powerful tool for learning visual representations. In this paper, we identify and characterize artifacts in feature maps of both supervised and self-supervised ViT networks. The artifacts correspond to high-norm tokens appearing during inference primarily in low-informative background areas of images, that are repurposed for internal computations. We propose a simple yet effective solution based on providing additional tokens to the input sequence of the Vision Transformer to fill that role. We show that this solution fixes that problem entirely for both supervised and self-supervised models, sets a new state of the art for self-supervised visual models on dense visual prediction tasks, enables object discovery methods with larger models, and most importantly leads to smoother feature maps and attention maps for downstream visual processing.

Read more

4/15/2024

H2O-Danube-1.8B Technical Report

Philipp Singer, Pascal Pfeiffer, Yauhen Babakhin, Maximilian Jeblick, Nischay Dhankhar, Gabor Fodor, Sri Satish Ambati

YC

7

Reddit

33

We present H2O-Danube, a series of small 1.8B language models consisting of H2O-Danube-1.8B, trained on 1T tokens, and the incremental improved H2O-Danube2-1.8B trained on an additional 2T tokens. Our models exhibit highly competitive metrics across a multitude of benchmarks and, as of the time of this writing, H2O-Danube2-1.8B achieves the top ranking on Open LLM Leaderboard for all models below the 2B parameter range. The models follow core principles of LLama 2 and Mistral, and we leverage and refine various techniques for pre-training large language models. We additionally release chat models trained with supervised fine-tuning followed by direct preference optimization. We make all models openly available under Apache 2.0 license further democratizing LLMs to a wider audience economically.

Read more

4/16/2024

📉

The Expressive Power of Transformers with Chain of Thought

William Merrill, Ashish Sabharwal

YC

20

Reddit

0

Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a chain of thought or scratchpad, i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming projected pre-norm (a slight generalization of standard pre-norm), adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems -- the first exact characterization of a type of transformers in terms of standard complexity classes. Together, this provides a nuanced framework for understanding how the length of a transformer's chain of thought or scratchpad impacts its reasoning power.

Read more

4/15/2024

GoEX: Perspectives and Designs Towards a Runtime for Autonomous LLM Applications

GoEX: Perspectives and Designs Towards a Runtime for Autonomous LLM Applications

Shishir G. Patil, Tianjun Zhang, Vivian Fang, Noppapon C., Roy Huang, Aaron Hao, Martin Casado, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica

YC

14

Reddit

0

Large Language Models (LLMs) are evolving beyond their classical role of providing information within dialogue systems to actively engaging with tools and performing actions on real-world applications and services. Today, humans verify the correctness and appropriateness of the LLM-generated outputs (e.g., code, functions, or actions) before putting them into real-world execution. This poses significant challenges as code comprehension is well known to be notoriously difficult. In this paper, we study how humans can efficiently collaborate with, delegate to, and supervise autonomous LLMs in the future. We argue that in many cases, post-facto validation - verifying the correctness of a proposed action after seeing the output - is much easier than the aforementioned pre-facto validation setting. The core concept behind enabling a post-facto validation system is the integration of an intuitive undo feature, and establishing a damage confinement for the LLM-generated actions as effective strategies to mitigate the associated risks. Using this, a human can now either revert the effect of an LLM-generated output or be confident that the potential risk is bounded. We believe this is critical to unlock the potential for LLM agents to interact with applications and services with limited (post-facto) human involvement. We describe the design and implementation of our open-source runtime for executing LLM actions, Gorilla Execution Engine (GoEX), and present open research questions towards realizing the goal of LLMs and applications interacting with each other with minimal human supervision. We release GoEX at https://github.com/ShishirPatil/gorilla/.

Read more

4/11/2024

🤿

Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H. Huang, Dhruva Tirumala, Jan Humplik, Markus Wulfmeier, Saran Tunyasuvunakool, Noah Y. Siegel, Roland Hafner, Michael Bloesch, Kristian Hartikainen, Arunkumar Byravan, Leonard Hasenclever, Yuval Tassa, Fereshteh Sadeghi, Nathan Batchelor, Federico Casarini, Stefano Saliceti, Charles Game, Neil Sreendra, Kushal Patel, Marlon Gwira, Andrea Huber, Nicole Hurley, Francesco Nori, Raia Hadsell, Nicolas Heess

YC

2

Reddit

27

We investigate whether Deep Reinforcement Learning (Deep RL) is able to synthesize sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be composed into complex behavioral strategies in dynamic environments. We used Deep RL to train a humanoid robot with 20 actuated joints to play a simplified one-versus-one (1v1) soccer game. The resulting agent exhibits robust and dynamic movement skills such as rapid fall recovery, walking, turning, kicking and more; and it transitions between them in a smooth, stable, and efficient manner. The agent's locomotion and tactical behavior adapts to specific game contexts in a way that would be impractical to manually design. The agent also developed a basic strategic understanding of the game, and learned, for instance, to anticipate ball movements and to block opponent shots. Our agent was trained in simulation and transferred to real robots zero-shot. We found that a combination of sufficiently high-frequency control, targeted dynamics randomization, and perturbations during training in simulation enabled good-quality transfer. Although the robots are inherently fragile, basic regularization of the behavior during training led the robots to learn safe and effective movements while still performing in a dynamic and agile way -- well beyond what is intuitively expected from the robot. Indeed, in experiments, they walked 181% faster, turned 302% faster, took 63% less time to get up, and kicked a ball 34% faster than a scripted baseline, while efficiently combining the skills to achieve the longer term objectives.

Read more

4/12/2024

🌀

Tied-Lora: Enhancing parameter efficiency of LoRA with weight tying

Adithya Renduchintala, Tugrul Konuk, Oleksii Kuchaiev

YC

0

Reddit

25

We introduce Tied-LoRA, a novel paradigm leveraging weight tying and selective training to enhance the parameter efficiency of Low-rank Adaptation (LoRA). Our exploration encompasses different plausible combinations of parameter training and freezing, coupled with weight tying, aimed at identifying the optimal trade-off between performance and the count of trainable parameters. Across $5$ diverse tasks and two foundational language models with different parameter counts, our experiments provide comprehensive insights into the inherent trade-offs between efficiency and performance. Our findings reveal a specific Tied-LoRA configuration that distinguishes itself by showcasing comparable performance to LoRA across multiple tasks while utilizing only a fraction of the parameters employed by the standard LoRA method, particularly at elevated ranks. This underscores the efficacy of Tied-LoRA in achieving impressive results with significantly reduced model complexity.

Read more

4/16/2024

🎯

Generalization in diffusion models arises from geometry-adaptive harmonic representations

Zahra Kadkhodaie, Florentin Guth, Eero P. Simoncelli, St'ephane Mallat

YC

0

Reddit

19

Deep neural networks (DNNs) trained for image denoising are able to generate high-quality samples with score-based reverse diffusion algorithms. These impressive capabilities seem to imply an escape from the curse of dimensionality, but recent reports of memorization of the training set raise the question of whether these networks are learning the true continuous density of the data. Here, we show that two DNNs trained on non-overlapping subsets of a dataset learn nearly the same score function, and thus the same density, when the number of training images is large enough. In this regime of strong generalization, diffusion-generated images are distinct from the training set, and are of high visual quality, suggesting that the inductive biases of the DNNs are well-aligned with the data density. We analyze the learned denoising functions and show that the inductive biases give rise to a shrinkage operation in a basis adapted to the underlying image. Examination of these bases reveals oscillating harmonic structures along contours and in homogeneous regions. We demonstrate that trained denoisers are inductively biased towards these geometry-adaptive harmonic bases since they arise not only when the network is trained on photographic images, but also when it is trained on image classes supported on low-dimensional manifolds for which the harmonic basis is suboptimal. Finally, we show that when trained on regular image classes for which the optimal basis is known to be geometry-adaptive and harmonic, the denoising performance of the networks is near-optimal.

Read more

4/15/2024

🌀

Data-Efficient Multimodal Fusion on a Single GPU

Noel Vouitsis, Zhaoyan Liu, Satya Krishna Gorti, Valentin Villecroze, Jesse C. Cresswell, Guangwei Yu, Gabriel Loaiza-Ganem, Maksims Volkovs

YC

0

Reddit

18

The goal of multimodal alignment is to learn a single latent space that is shared between multimodal inputs. The most powerful models in this space have been trained using massive datasets of paired inputs and large-scale computational resources, making them prohibitively expensive to train in many practical scenarios. We surmise that existing unimodal encoders pre-trained on large amounts of unimodal data should provide an effective bootstrap to create multimodal models from unimodal ones at much lower costs. We therefore propose FuseMix, a multimodal augmentation scheme that operates on the latent spaces of arbitrary pre-trained unimodal encoders. Using FuseMix for multimodal alignment, we achieve competitive performance -- and in certain cases outperform state-of-the art methods -- in both image-text and audio-text retrieval, with orders of magnitude less compute and data: for example, we outperform CLIP on the Flickr30K text-to-image retrieval task with $sim ! 600times$ fewer GPU days and $sim ! 80times$ fewer image-text pairs. Additionally, we show how our method can be applied to convert pre-trained text-to-image generative models into audio-to-image ones. Code is available at: https://github.com/layer6ai-labs/fusemix.

Read more

4/11/2024

RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

Aleksandar Botev, Soham De, Samuel L Smith, Anushan Fernando, George-Cristian Muraru, Ruba Haroun, Leonard Berrada, Razvan Pascanu, Pier Giuseppe Sessa, Robert Dadashi, L'eonard Hussenot, Johan Ferret, Sertan Girgin, Olivier Bachem, Alek Andreev, Kathleen Kenealy, Thomas Mesnard, Cassidy Hardin, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivi`ere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Armand Joulin, Noah Fiedel, Evan Senter, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins, David Budden, Arnaud Doucet, Sharad Vikram, Adam Paszke, Trevor Gale, Sebastian Borgeaud, Charlie Chen, Andy Brock, Antonia Paterson, Jenny Brennan, Meg Risdal, Raj Gundluru, Nesh Devanathan, Paul Mooney, Nilay Chauhan, Phil Culliton, Luiz GUStavo Martins, Elisa Bandy, David Huntsperger, Glenn Cameron, Arthur Zucker, Tris Warkentin, Ludovic Peran, Minh Giang, Zoubin Ghahramani, Cl'ement Farabet, Koray Kavukcuoglu, Demis Hassabis, Raia Hadsell, Yee Whye Teh, Nando de Frietas

YC

0

Reddit

18

We introduce RecurrentGemma, an open language model which uses Google's novel Griffin architecture. Griffin combines linear recurrences with local attention to achieve excellent performance on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences. We provide a pre-trained model with 2B non-embedding parameters, and an instruction tuned variant. Both models achieve comparable performance to Gemma-2B despite being trained on fewer tokens.

Read more

4/12/2024

Page 1 of 140