upstage-llama-2-70b-instruct-v2

Maintainer: lucataco

Total Score

1

Last updated 6/13/2024
AI model preview image
PropertyValue
Model LinkView on Replicate
API SpecView on Replicate
Github LinkView on Github
Paper LinkNo paper link provided

Get summaries of the top AI models delivered straight to your inbox:

Model overview

upstage-llama-2-70b-instruct-v2 is an AI model developed by Upstage, a leading AI research company. It is an extension of the Llama-2-70b-instruct model, which is based on Meta's Llama 2 architecture. The upstage-llama-2-70b-instruct-v2 model has been further fine-tuned and optimized for improved performance on a range of benchmark tasks.

Compared to similar models like llama-2-13b-chat and llama-30b-instruct-2048, the upstage-llama-2-70b-instruct-v2 model has a larger 70B parameter size, which enables it to handle more complex and diverse tasks with higher accuracy.

Model inputs and outputs

Inputs

  • Prompt: The input text prompt that the model will generate a response to.
  • System Prompt: A guiding prompt that helps shape the model's behavior to be helpful, respectful, and safe.
  • Temperature: A value controlling the randomness of the output, where higher values lead to more diverse and creative responses.
  • Top P: A value controlling the diversity of the output, where lower values lead to more focused and constrained responses.
  • Repetition Penalty: A value controlling the model's tendency to repeat words or phrases, where higher values discourage repetition.
  • Max New Tokens: The maximum number of new tokens the model will generate in response to the input prompt.

Outputs

  • Generated Text: The model's response to the input prompt, which can range from short, concise answers to longer, more detailed text.

Capabilities

The upstage-llama-2-70b-instruct-v2 model has demonstrated strong performance on a variety of benchmark tasks, including question answering, common sense reasoning, and multi-choice exams. It is particularly adept at generating coherent and relevant responses to open-ended prompts, making it a valuable tool for applications such as chatbots, virtual assistants, and creative writing.

What can I use it for?

The upstage-llama-2-70b-instruct-v2 model could be useful for a wide range of applications, from customer service chatbots to content generation for marketing and educational materials. Its ability to understand and respond to natural language input makes it a versatile tool that could be applied in various industries and domains.

For businesses looking to implement private large language models, Upstage offers a tailored solution where you can easily apply and fine-tune the model with your own data for a seamless and customized experience.

Things to try

One interesting aspect of the upstage-llama-2-70b-instruct-v2 model is its ability to handle longer input prompts, thanks to the rope_scaling option. You could try experimenting with prompts that are several hundred or even a thousand tokens long to see how the model handles and generates responses for more complex and detailed input.

Additionally, you could explore the model's performance on specialized tasks or domains by fine-tuning it on your own dataset. This could unlock new capabilities and use cases for the model within your specific context.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

AI model preview image

llama-2-7b-chat

lucataco

Total Score

20

The llama-2-7b-chat is a version of Meta's Llama 2 language model with 7 billion parameters, fine-tuned specifically for chat completions. It is part of a family of Llama 2 models created by Meta, including the base Llama 2 7B model, the Llama 2 13B model, and the Llama 2 13B chat model. These models demonstrate Meta's continued advancement in large language models. Model inputs and outputs The llama-2-7b-chat model takes several input parameters to govern the text generation process: Inputs Prompt**: The initial text that the model will use to generate additional content. System Prompt**: A prompt that helps guide the system's behavior, instructing it to be helpful, respectful, honest, and avoid harmful content. Max New Tokens**: The maximum number of new tokens the model will generate. Temperature**: Controls the randomness of the output, with higher values resulting in more varied and creative text. Top P**: Specifies the percentage of the most likely tokens to consider during sampling, allowing the model to focus on the most relevant options. Repetition Penalty**: Adjusts the likelihood of the model repeating words or phrases, encouraging more diverse output. Outputs Output Text**: The text generated by the model based on the provided input parameters. Capabilities The llama-2-7b-chat model is capable of generating human-like text responses to a wide range of prompts. Its fine-tuning on chat data allows it to engage in more natural and contextual conversations compared to the base Llama 2 7B model. The model can be used for tasks such as question answering, task completion, and open-ended dialogue. What can I use it for? The llama-2-7b-chat model can be used in a variety of applications that require natural language generation, such as chatbots, virtual assistants, and content creation tools. Its strong performance on chat-related tasks makes it well-suited for building conversational AI systems that can engage in more realistic and meaningful dialogues. Additionally, the model's smaller size compared to the 13B version may make it more accessible for certain use cases or deployment environments. Things to try One interesting aspect of the llama-2-7b-chat model is its ability to adapt its tone and style based on the provided system prompt. By adjusting the system prompt, you can potentially guide the model to generate responses that are more formal, casual, empathetic, or even playful. Experimenting with different system prompts can reveal the model's versatility and help uncover new use cases.

Read more

Updated Invalid Date

AI model preview image

llama-2-13b-chat

lucataco

Total Score

18

The llama-2-13b-chat is a 13 billion parameter language model developed by Meta, fine-tuned for chat completions. It is part of the Llama 2 series of language models, which also includes the base Llama 2 13B model, the Llama 2 7B model, and the Llama 2 7B chat model. The llama-2-13b-chat model is designed to provide more natural and contextual responses in conversational settings compared to the base Llama 2 13B model. Model inputs and outputs The llama-2-13b-chat model takes a prompt as input and generates text in response. The input prompt can be customized with various parameters such as temperature, top-p, and repetition penalty to adjust the randomness and coherence of the generated text. Inputs Prompt**: The text prompt to be used as input for the model. System Prompt**: A prompt that helps guide the system's behavior, encouraging it to be helpful, respectful, and honest. Max New Tokens**: The maximum number of new tokens to be generated in response to the input prompt. Temperature**: A value between 0 and 5 that controls the randomness of the output, with higher values resulting in more diverse and unpredictable text. Top P**: A value between 0.01 and 1 that determines the percentage of the most likely tokens to be considered during the generation process, with lower values resulting in more conservative and predictable text. Repetition Penalty**: A value between 0 and 5 that penalizes the model for repeating the same words, with values greater than 1 discouraging repetition. Outputs Output**: The text generated by the model in response to the input prompt. Capabilities The llama-2-13b-chat model is capable of generating coherent and contextual responses to a wide range of prompts, including questions, statements, and open-ended queries. It can be used for tasks such as chatbots, text generation, and language modeling. What can I use it for? The llama-2-13b-chat model can be used for a variety of applications, such as building conversational AI assistants, generating creative writing, or providing knowledgeable responses to user queries. By leveraging its fine-tuning for chat completions, the model can be particularly useful in scenarios where natural and engaging dialogue is required, such as customer service, education, or entertainment. Things to try One interesting aspect of the llama-2-13b-chat model is its ability to provide informative and nuanced responses to open-ended prompts. For example, you could try asking the model to explain a complex topic, such as the current state of artificial intelligence research, and observe how it breaks down the topic in a clear and coherent manner. Alternatively, you could experiment with different temperature and top-p settings to see how they affect the creativity and diversity of the generated text.

Read more

Updated Invalid Date

AI model preview image

vicuna-7b-v1.3

lucataco

Total Score

11

The vicuna-7b-v1.3 is a large language model developed by LMSYS through fine-tuning the LLaMA model on user-shared conversations collected from ShareGPT. It is designed as a chatbot assistant, capable of engaging in natural language conversations. This model is related to other Vicuna and LLaMA-based models such as vicuna-13b-v1.3, upstage-llama-2-70b-instruct-v2, llava-v1.6-vicuna-7b, and llama-2-7b-chat. Model inputs and outputs The vicuna-7b-v1.3 model takes a text prompt as input and generates relevant text as output. The prompt can be an instruction, a question, or any other natural language input. The model's outputs are continuations of the input text, generated based on the model's understanding of the context. Inputs Prompt**: The text prompt that the model uses to generate a response. Temperature**: A parameter that controls the model's creativity and diversity of outputs. Lower temperatures result in more conservative and focused outputs, while higher temperatures lead to more exploratory and varied responses. Max new tokens**: The maximum number of new tokens the model will generate in response to the input prompt. Outputs Generated text**: The model's response to the input prompt, which can be of variable length depending on the prompt and parameters. Capabilities The vicuna-7b-v1.3 model is capable of engaging in open-ended conversations, answering questions, providing explanations, and generating creative text across a wide range of topics. It can be used for tasks such as language modeling, text generation, and chatbot development. What can I use it for? The primary use of the vicuna-7b-v1.3 model is for research on large language models and chatbots. Researchers and hobbyists in natural language processing, machine learning, and artificial intelligence can use this model to explore various applications, such as conversational AI, task-oriented dialogue systems, and language generation. Things to try With the vicuna-7b-v1.3 model, you can experiment with different prompts to see how the model responds. Try asking it questions, providing it with instructions, or giving it open-ended prompts to see the range of its capabilities. You can also adjust the temperature and max new tokens parameters to observe how they affect the model's output.

Read more

Updated Invalid Date

AI model preview image

vicuna-13b-v1.3

lucataco

Total Score

9

The vicuna-13b-v1.3 is a language model developed by the lmsys team. It is based on the Llama model from Meta, with additional training to instill more capable and ethical conversational abilities. The vicuna-13b-v1.3 model is similar to other Vicuna-based models and the Llama 2 Chat models in that they all leverage the strong language understanding and generation capabilities of Llama while fine-tuning for more natural, engaging, and trustworthy conversation. Model inputs and outputs The vicuna-13b-v1.3 model takes a single input - a text prompt - and generates a text response. The prompt can be any natural language instruction or query, and the model will attempt to provide a relevant and coherent answer. The output is an open-ended text response, which can range from a short phrase to multiple paragraphs depending on the complexity of the input. Inputs Prompt**: The natural language instruction or query to be processed by the model Outputs Response**: The model's generated text response to the input prompt Capabilities The vicuna-13b-v1.3 model is capable of engaging in open-ended dialogue, answering questions, providing explanations, and generating creative content across a wide range of topics. It has been trained to be helpful, honest, and harmless, making it suitable for various applications such as customer service, education, research assistance, and creative writing. What can I use it for? The vicuna-13b-v1.3 model can be used for a variety of applications, including: Conversational AI**: The model can be integrated into chatbots or virtual assistants to provide natural language interaction and task completion. Content Generation**: The model can be used to generate text for articles, stories, scripts, and other creative writing projects. Question Answering**: The model can be used to answer questions on a wide range of topics, making it useful for research, education, and customer support. Summarization**: The model can be used to summarize long-form text, making it useful for quickly digesting and understanding complex information. Things to try Some interesting things to try with the vicuna-13b-v1.3 model include: Engaging the model in open-ended dialogue to see the depth and nuance of its conversational abilities. Providing the model with creative writing prompts and observing the unique and imaginative responses it generates. Asking the model to explain complex topics, such as scientific or historical concepts, and evaluating the clarity and accuracy of its explanations. Pushing the model's boundaries by asking it to tackle ethical dilemmas or hypothetical scenarios, and observing its responses.

Read more

Updated Invalid Date