nammeh

Maintainer: galleri5

Total Score

1

Last updated 5/19/2024
AI model preview image
PropertyValue
Model LinkView on Replicate
API SpecView on Replicate
Github LinkNo Github link provided
Paper LinkNo paper link provided

Get summaries of the top AI models delivered straight to your inbox:

Model overview

nammeh is a SDXL LoRA model trained by galleri5 on SDXL generations with a "funky glitch aesthetic". According to the maintainer, the model was not trained on any artists' work. This model is similar to sdxl-allaprima which was trained on a blocky oil painting and still life, as well as glitch which is described as a "jumble-jam, a kerfuffle of kilobytes". The icons model by the same creator is also a SDXL finetune focused on generating slick icons and flat pop constructivist graphics.

Model inputs and outputs

nammeh is a text-to-image generation model that can take a text prompt and output one or more corresponding images. The model has a variety of input parameters that allow for fine-tuning the output, such as image size, number of outputs, guidance scale, and others. The output of the model is an array of image URLs.

Inputs

  • Prompt: The text prompt describing the desired image
  • Negative Prompt: Optional text to exclude from the image generation
  • Image: Input image for img2img or inpaint mode
  • Mask: Input mask for inpaint mode
  • Width: Width of the output image
  • Height: Height of the output image
  • Seed: Random seed (leave blank to randomize)
  • Scheduler: Scheduling algorithm to use
  • Guidance Scale: Scale for classifier-free guidance
  • Num Inference Steps: Number of denoising steps
  • Refine: Refine style to use
  • Lora Scale: LoRA additive scale
  • Refine Steps: Number of refine steps
  • High Noise Frac: Fraction of noise to use for expert_ensemble_refiner
  • Apply Watermark: Whether to apply a watermark to the output

Outputs

  • Array of image URLs: The generated images

Capabilities

nammeh is capable of generating high-quality, visually striking images from text prompts. The model seems to have a particular affinity for a "funky glitch aesthetic", producing outputs with a unique and distorted visual style. This could be useful for creative projects, experimental art, or generating images with a distinct digital/cyberpunk feel.

What can I use it for?

The nammeh model could be a great tool for designers, artists, and creatives looking to generate images with a glitch-inspired aesthetic. The model's ability to produce highly stylized and abstract visuals makes it well-suited for projects in the realms of digital art, music/album covers, and experimental video/film. Businesses in the tech or gaming industries may also find nammeh useful for generating graphics, illustrations, or promotional materials with a futuristic, cyberpunk-influenced look and feel.

Things to try

One interesting aspect of nammeh is its lack of artist references during training, which seems to have resulted in a unique and original visual style. Try experimenting with different prompts to see the range of outputs the model can produce, and see how the "funky glitch" aesthetic manifests in various contexts. You could also try combining nammeh with other Lora models or techniques to create even more striking and unexpected results.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

AI model preview image

icons

galleri5

Total Score

24

The icons model is a fine-tuned version of the SDXL (Stable Diffusion XL) model, created by the Replicate user galleri5. It is trained to generate slick, flat, and constructivist-style icons and graphics with thick edges, drawing inspiration from Bing Generations. This model can be useful for quickly generating visually appealing icons and graphics for various applications, such as app development, web design, and digital marketing. Similar models that may be of interest include the sdxl-app-icons model, which is fine-tuned for generating app icons, and the sdxl-color model, which is trained for generating solid color images. Model inputs and outputs The icons model takes a text prompt as input and generates one or more images as output. The model can be used for both image generation and inpainting tasks, allowing users to either create new images from scratch or refine existing images. Inputs Prompt**: The text prompt that describes the desired image. This can be a general description or a more specific request for an icon or graphic. Image**: An optional input image for use in an inpainting task, where the model will refine the existing image based on the text prompt. Mask**: An optional input mask for the inpainting task, which specifies the areas of the image that should be preserved or inpainted. Seed**: An optional random seed value to ensure reproducible results. Width and Height**: The desired dimensions of the output image. Num Outputs**: The number of images to generate. Additional parameters**: The model also accepts various parameters to control the image generation process, such as guidance scale, number of inference steps, and refine settings. Outputs Output Images**: The model generates one or more images that match the input prompt and other specified parameters. Capabilities The icons model excels at generating high-quality, visually appealing icons and graphics with a distinct flat, constructivist style. The images produced have thick edges and a simplified, minimalist aesthetic, making them well-suited for use in a variety of digital applications. What can I use it for? The icons model can be used for a wide range of applications, including: App Development**: Generating custom icons and graphics for mobile app user interfaces. Web Design**: Creating visually striking icons and illustrations for websites and web applications. Digital Marketing**: Producing unique, branded graphics for social media, advertisements, and other marketing materials. Graphic Design**: Quickly prototyping and iterating on icon designs for various projects. Things to try To get the most out of the icons model, you can experiment with different prompts that describe the desired style, theme, or content of the icons or graphics. Try varying the level of detail in your prompts, as well as incorporating specific references to artistic movements or design styles (e.g., "constructivist", "flat design", "minimalist"). Additionally, you can explore the model's inpainting capabilities by providing an existing image and a mask or prompt to refine it, allowing you to seamlessly integrate generated elements into your existing designs.

Read more

Updated Invalid Date

AI model preview image

glitch

galleri5

Total Score

1

glitch is a work-in-progress model from Replicate creator galleri5, who is known for developing models like icons and dreamlike-anime. The glitch model aims to create a "jumble-jam, a kerfuffle of kilobytes" by glitching and distorting input images and prompts. This contrasts with models like blip-2, which focuses on understanding image content, or gfpgan, which restores old or AI-generated faces. Model inputs and outputs The glitch model accepts a variety of inputs, including an image, a mask, a prompt, and various settings to control the generation process. The output is one or more distorted images that reflect the glitching effect. Inputs Prompt**: The text prompt that describes the desired output image. Image**: An input image to be glitched. Mask**: A black and white image that defines the areas of the input image to be preserved or glitched. Seed**: A random seed value to control the randomness of the glitch effect. Width/Height**: The desired width and height of the output image. Num Outputs**: The number of images to generate. Guidance Scale**: The strength of the guidance towards the prompt. Num Inference Steps**: The number of denoising steps to perform. Refine**: The type of refinement to apply to the output. Outputs Output Images**: One or more distorted and glitched images based on the input. Capabilities The glitch model can take various inputs and apply a unique glitch effect to create visually striking and surreal output images. This can be useful for generating abstract or experimental artwork, as well as for adding a "distorted" aesthetic to existing images. What can I use it for? The glitch model could be used for a variety of creative projects, such as generating artwork, designing album covers, or creating background images for digital media. The model's ability to glitch and distort images in unexpected ways makes it a potentially valuable tool for artists and designers looking to explore unconventional visual styles. As with any generative AI model, it's important to consider the ethical implications of using the model, such as ensuring that any generated images are not used for deceptive or harmful purposes. Things to try One interesting thing to try with the glitch model is experimenting with different input masks to control which parts of the image are glitched. By carefully selecting the mask, you can create more targeted and intentional distortions. Additionally, playing with the various settings, such as guidance scale and number of inference steps, can result in a wide range of glitching effects, from subtle to more extreme.

Read more

Updated Invalid Date

AI model preview image

sdxl-allaprima

doriandarko

Total Score

3

The sdxl-allaprima model, created by Dorian Darko, is a Stable Diffusion XL (SDXL) model trained on a blocky oil painting and still life dataset. This model shares similarities with other SDXL models like sdxl-inpainting, sdxl-bladerunner2049, and sdxl-deep-down, which have been fine-tuned on specific datasets to enhance their capabilities in areas like inpainting, sci-fi imagery, and underwater scenes. Model inputs and outputs The sdxl-allaprima model accepts a variety of inputs, including an input image, a prompt, and optional parameters like seed, width, height, and guidance scale. The output is an array of generated images that match the input prompt and image. Inputs Prompt**: The text prompt that describes the desired image. Image**: An input image that the model can use as a starting point for generation or inpainting. Mask**: A mask that specifies which areas of the input image should be preserved or inpainted. Seed**: A random seed value that can be used to generate reproducible outputs. Width/Height**: The desired dimensions of the output image. Guidance Scale**: A parameter that controls the influence of the text prompt on the generated image. Outputs Generated Images**: An array of one or more images that match the input prompt and image. Capabilities The sdxl-allaprima model is capable of generating high-quality, artistic images based on a text prompt. It can also be used for inpainting, where the model fills in missing or damaged areas of an input image. The model's training on a dataset of blocky oil paintings and still lifes gives it the ability to generate visually striking and unique images in this style. What can I use it for? The sdxl-allaprima model could be useful for a variety of applications, such as: Creating unique digital artwork and illustrations for personal or commercial use Generating concept art and visual references for creative projects Enhancing or repairing damaged or incomplete images through inpainting Experimenting with different artistic styles and techniques in a generative AI framework Things to try One interesting aspect of the sdxl-allaprima model is its ability to generate images with a distinctive blocky, oil painting-inspired style. Users could experiment with prompts that play to this strength, such as prompts that describe abstract, surreal, or impressionistic scenes. Additionally, the model's inpainting capabilities could be explored by providing it with partially complete images and seeing how it fills in the missing details.

Read more

Updated Invalid Date

AI model preview image

gfpgan

tencentarc

Total Score

74.2K

gfpgan is a practical face restoration algorithm developed by the Tencent ARC team. It leverages the rich and diverse priors encapsulated in a pre-trained face GAN (such as StyleGAN2) to perform blind face restoration on old photos or AI-generated faces. This approach contrasts with similar models like Real-ESRGAN, which focuses on general image restoration, or PyTorch-AnimeGAN, which specializes in anime-style photo animation. Model inputs and outputs gfpgan takes an input image and rescales it by a specified factor, typically 2x. The model can handle a variety of face images, from low-quality old photos to high-quality AI-generated faces. Inputs Img**: The input image to be restored Scale**: The factor by which to rescale the output image (default is 2) Version**: The gfpgan model version to use (v1.3 for better quality, v1.4 for more details and better identity) Outputs Output**: The restored face image Capabilities gfpgan can effectively restore a wide range of face images, from old, low-quality photos to high-quality AI-generated faces. It is able to recover fine details, fix blemishes, and enhance the overall appearance of the face while preserving the original identity. What can I use it for? You can use gfpgan to restore old family photos, enhance AI-generated portraits, or breathe new life into low-quality images of faces. The model's capabilities make it a valuable tool for photographers, digital artists, and anyone looking to improve the quality of their facial images. Additionally, the maintainer tencentarc offers an online demo on Replicate, allowing you to try the model without setting up the local environment. Things to try Experiment with different input images, varying the scale and version parameters, to see how gfpgan can transform low-quality or damaged face images into high-quality, detailed portraits. You can also try combining gfpgan with other models like Real-ESRGAN to enhance the background and non-facial regions of the image.

Read more

Updated Invalid Date