idm-vton

Maintainer: cuuupid

Total Score

178

Last updated 6/19/2024
AI model preview image
PropertyValue
Model LinkView on Replicate
API SpecView on Replicate
Github LinkView on Github
Paper LinkView on Arxiv

Create account to get full access

or

If you already have an account, we'll log you in

Model overview

The idm-vton model, developed by the researcher cuuupid, is a state-of-the-art clothing virtual try-on system designed to work in the wild. It outperforms similar models like instant-id, absolutereality-v1.8.1, and reliberate-v3 in terms of realism and authenticity.

Model inputs and outputs

The idm-vton model takes in several input images and parameters to generate a realistic image of a person wearing a particular garment. The inputs include the garment image, a mask image, the human image, and optional parameters like crop, seed, and steps. The model outputs a single image of the person wearing the garment.

Inputs

  • Garm Img: The image of the garment, which should match the specified category (e.g., upper body, lower body, or dresses).
  • Mask Img: An optional mask image that can be used to speed up the process.
  • Human Img: The image of the person who will be wearing the garment.
  • Category: The category of the garment, which can be "upper_body", "lower_body", or "dresses".
  • Crop: A boolean indicating whether to use cropping on the input images.
  • Seed: An integer that sets the random seed for reproducibility.
  • Steps: The number of diffusion steps to use for generating the output image.

Outputs

  • Output: A single image of the person wearing the specified garment.

Capabilities

The idm-vton model is capable of generating highly realistic and authentic virtual try-on images, even in challenging "in the wild" scenarios. It outperforms previous methods by using advanced diffusion models and techniques to seamlessly blend the garment with the person's body and background.

What can I use it for?

The idm-vton model can be used for a variety of applications, such as e-commerce clothing websites, virtual fashion shows, and personal styling tools. By allowing users to visualize how a garment would look on them, the model can help increase conversion rates, reduce return rates, and enhance the overall shopping experience.

Things to try

One interesting aspect of the idm-vton model is its ability to work with a wide range of garment types and styles. Try experimenting with different categories of clothing, such as formal dresses, casual t-shirts, or even accessories like hats or scarves. Additionally, you can play with the input parameters, such as the number of diffusion steps or the seed, to see how they affect the output.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

AI model preview image

sdxl-lightning-4step

bytedance

Total Score

127.0K

sdxl-lightning-4step is a fast text-to-image model developed by ByteDance that can generate high-quality images in just 4 steps. It is similar to other fast diffusion models like AnimateDiff-Lightning and Instant-ID MultiControlNet, which also aim to speed up the image generation process. Unlike the original Stable Diffusion model, these fast models sacrifice some flexibility and control to achieve faster generation times. Model inputs and outputs The sdxl-lightning-4step model takes in a text prompt and various parameters to control the output image, such as the width, height, number of images, and guidance scale. The model can output up to 4 images at a time, with a recommended image size of 1024x1024 or 1280x1280 pixels. Inputs Prompt**: The text prompt describing the desired image Negative prompt**: A prompt that describes what the model should not generate Width**: The width of the output image Height**: The height of the output image Num outputs**: The number of images to generate (up to 4) Scheduler**: The algorithm used to sample the latent space Guidance scale**: The scale for classifier-free guidance, which controls the trade-off between fidelity to the prompt and sample diversity Num inference steps**: The number of denoising steps, with 4 recommended for best results Seed**: A random seed to control the output image Outputs Image(s)**: One or more images generated based on the input prompt and parameters Capabilities The sdxl-lightning-4step model is capable of generating a wide variety of images based on text prompts, from realistic scenes to imaginative and creative compositions. The model's 4-step generation process allows it to produce high-quality results quickly, making it suitable for applications that require fast image generation. What can I use it for? The sdxl-lightning-4step model could be useful for applications that need to generate images in real-time, such as video game asset generation, interactive storytelling, or augmented reality experiences. Businesses could also use the model to quickly generate product visualization, marketing imagery, or custom artwork based on client prompts. Creatives may find the model helpful for ideation, concept development, or rapid prototyping. Things to try One interesting thing to try with the sdxl-lightning-4step model is to experiment with the guidance scale parameter. By adjusting the guidance scale, you can control the balance between fidelity to the prompt and diversity of the output. Lower guidance scales may result in more unexpected and imaginative images, while higher scales will produce outputs that are closer to the specified prompt.

Read more

Updated Invalid Date

AI model preview image

stable-diffusion

stability-ai

Total Score

108.1K

Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. Developed by Stability AI, it is an impressive AI model that can create stunning visuals from simple text prompts. The model has several versions, with each newer version being trained for longer and producing higher-quality images than the previous ones. The main advantage of Stable Diffusion is its ability to generate highly detailed and realistic images from a wide range of textual descriptions. This makes it a powerful tool for creative applications, allowing users to visualize their ideas and concepts in a photorealistic way. The model has been trained on a large and diverse dataset, enabling it to handle a broad spectrum of subjects and styles. Model inputs and outputs Inputs Prompt**: The text prompt that describes the desired image. This can be a simple description or a more detailed, creative prompt. Seed**: An optional random seed value to control the randomness of the image generation process. Width and Height**: The desired dimensions of the generated image, which must be multiples of 64. Scheduler**: The algorithm used to generate the image, with options like DPMSolverMultistep. Num Outputs**: The number of images to generate (up to 4). Guidance Scale**: The scale for classifier-free guidance, which controls the trade-off between image quality and faithfulness to the input prompt. Negative Prompt**: Text that specifies things the model should avoid including in the generated image. Num Inference Steps**: The number of denoising steps to perform during the image generation process. Outputs Array of image URLs**: The generated images are returned as an array of URLs pointing to the created images. Capabilities Stable Diffusion is capable of generating a wide variety of photorealistic images from text prompts. It can create images of people, animals, landscapes, architecture, and more, with a high level of detail and accuracy. The model is particularly skilled at rendering complex scenes and capturing the essence of the input prompt. One of the key strengths of Stable Diffusion is its ability to handle diverse prompts, from simple descriptions to more creative and imaginative ideas. The model can generate images of fantastical creatures, surreal landscapes, and even abstract concepts with impressive results. What can I use it for? Stable Diffusion can be used for a variety of creative applications, such as: Visualizing ideas and concepts for art, design, or storytelling Generating images for use in marketing, advertising, or social media Aiding in the development of games, movies, or other visual media Exploring and experimenting with new ideas and artistic styles The model's versatility and high-quality output make it a valuable tool for anyone looking to bring their ideas to life through visual art. By combining the power of AI with human creativity, Stable Diffusion opens up new possibilities for visual expression and innovation. Things to try One interesting aspect of Stable Diffusion is its ability to generate images with a high level of detail and realism. Users can experiment with prompts that combine specific elements, such as "a steam-powered robot exploring a lush, alien jungle," to see how the model handles complex and imaginative scenes. Additionally, the model's support for different image sizes and resolutions allows users to explore the limits of its capabilities. By generating images at various scales, users can see how the model handles the level of detail and complexity required for different use cases, such as high-resolution artwork or smaller social media graphics. Overall, Stable Diffusion is a powerful and versatile AI model that offers endless possibilities for creative expression and exploration. By experimenting with different prompts, settings, and output formats, users can unlock the full potential of this cutting-edge text-to-image technology.

Read more

Updated Invalid Date

AI model preview image

oot_diffusion

viktorfa

Total Score

11

oot_diffusion is a virtual dressing room model created by viktorfa. It allows users to visualize how garments would look on a model. This can be useful for online clothing shopping or fashion design. Similar models include idm-vton, which provides virtual clothing try-on, and gfpgan, which restores old or AI-generated faces. Model inputs and outputs The oot_diffusion model takes several inputs to generate an image of a model wearing a specific garment. These include a seed value, the number of inference steps, an image of the model, an image of the garment, and a guidance scale. Inputs Seed**: An integer value used to initialize the random number generator. Steps**: The number of inference steps to perform, between 1 and 40. Model Image**: A clear picture of the model. Garment Image**: A clear picture of the upper body garment. Guidance Scale**: A value between 1 and 5 that controls the influence of the prompt on the generated image. Outputs An array of image URLs representing the generated outputs. Capabilities The oot_diffusion model can generate realistic images of a model wearing a specific garment. This can be useful for virtual clothing try-on, fashion design, and online shopping. What can I use it for? You can use oot_diffusion to visualize how clothing would look on a model, which can be helpful for online clothing shopping or fashion design. For example, you could use it to try on different outfits before making a purchase, or to experiment with different garment designs. Things to try With oot_diffusion, you can experiment with different input values to see how they affect the generated output. Try adjusting the seed, number of steps, or guidance scale to see how the resulting image changes. You could also try using different model and garment images to see how the model can adapt to different inputs.

Read more

Updated Invalid Date

AI model preview image

gfpgan

tencentarc

Total Score

76.0K

gfpgan is a practical face restoration algorithm developed by the Tencent ARC team. It leverages the rich and diverse priors encapsulated in a pre-trained face GAN (such as StyleGAN2) to perform blind face restoration on old photos or AI-generated faces. This approach contrasts with similar models like Real-ESRGAN, which focuses on general image restoration, or PyTorch-AnimeGAN, which specializes in anime-style photo animation. Model inputs and outputs gfpgan takes an input image and rescales it by a specified factor, typically 2x. The model can handle a variety of face images, from low-quality old photos to high-quality AI-generated faces. Inputs Img**: The input image to be restored Scale**: The factor by which to rescale the output image (default is 2) Version**: The gfpgan model version to use (v1.3 for better quality, v1.4 for more details and better identity) Outputs Output**: The restored face image Capabilities gfpgan can effectively restore a wide range of face images, from old, low-quality photos to high-quality AI-generated faces. It is able to recover fine details, fix blemishes, and enhance the overall appearance of the face while preserving the original identity. What can I use it for? You can use gfpgan to restore old family photos, enhance AI-generated portraits, or breathe new life into low-quality images of faces. The model's capabilities make it a valuable tool for photographers, digital artists, and anyone looking to improve the quality of their facial images. Additionally, the maintainer tencentarc offers an online demo on Replicate, allowing you to try the model without setting up the local environment. Things to try Experiment with different input images, varying the scale and version parameters, to see how gfpgan can transform low-quality or damaged face images into high-quality, detailed portraits. You can also try combining gfpgan with other models like Real-ESRGAN to enhance the background and non-facial regions of the image.

Read more

Updated Invalid Date