hierspeechpp

Maintainer: adirik

Total Score

4

Last updated 5/19/2024
AI model preview image
PropertyValue
Model LinkView on Replicate
API SpecView on Replicate
Github LinkView on Github
Paper LinkView on Arxiv

Get summaries of the top AI models delivered straight to your inbox:

Model overview

hierspeechpp is a zero-shot speech synthesizer developed by Replicate user adirik. It is a text-to-speech model that can generate speech from text and a target voice, enabling zero-shot speech synthesis. This model is similar to other text-to-speech models like styletts2, voicecraft, and whisperspeech-small, which also focus on generating speech from text or audio.

Model inputs and outputs

hierspeechpp takes in text or audio as input and generates an audio file as output. The model allows you to provide a target voice clip, which it will use to synthesize the output speech. This enables zero-shot speech synthesis, where the model can generate speech in the voice of the target speaker without requiring any additional training data.

Inputs

  • input_text: (optional) Text input to the model. If provided, it will be used for the speech content of the output.
  • input_sound: (optional) Sound input to the model in .wav format. If provided, it will be used for the speech content of the output.
  • target_voice: A voice clip in .wav format containing the speaker to synthesize.
  • denoise_ratio: Noise control. 0 means no noise reduction, 1 means maximum noise reduction.
  • text_to_vector_temperature: Temperature for text-to-vector model. Larger value corresponds to slightly more random output.
  • output_sample_rate: Sample rate of the output audio file.
  • scale_output_volume: Scale normalization. If set to true, the output audio will be scaled according to the input sound if provided.
  • seed: Random seed to use for reproducibility.

Outputs

  • Output: An audio file in .mp3 format containing the synthesized speech.

Capabilities

hierspeechpp can generate high-quality speech by leveraging a target voice clip. It is capable of zero-shot speech synthesis, meaning it can create speech in the voice of the target speaker without any additional training data. This allows for a wide range of applications, such as voice cloning, audiobook narration, and dubbing.

What can I use it for?

You can use hierspeechpp for various speech-related tasks, such as creating custom voice interfaces, generating audio content for podcasts or audiobooks, or even dubbing videos in different languages. The zero-shot nature of the model makes it particularly useful for projects where you need to generate speech in a specific voice without access to a large dataset of that speaker's recordings.

Things to try

One interesting thing to try with hierspeechpp is to experiment with the different input parameters, such as the denoise_ratio and text_to_vector_temperature. By adjusting these settings, you can fine-tune the output to your specific needs, such as reducing background noise or making the speech more natural-sounding. Additionally, you can try using different target voice clips to see how the model adapts to different speakers.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

AI model preview image

styletts2

adirik

Total Score

4.2K

styletts2 is a text-to-speech (TTS) model developed by Yinghao Aaron Li, Cong Han, Vinay S. Raghavan, Gavin Mischler, and Nima Mesgarani. It leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. Unlike its predecessor, styletts2 models styles as a latent random variable through diffusion models, allowing it to generate the most suitable style for the text without requiring reference speech. It also employs large pre-trained SLMs, such as WavLM, as discriminators with a novel differentiable duration modeling for end-to-end training, resulting in improved speech naturalness. Model inputs and outputs styletts2 takes in text and generates high-quality speech audio. The model inputs and outputs are as follows: Inputs Text**: The text to be converted to speech. Beta**: A parameter that determines the prosody of the generated speech, with lower values sampling style based on previous or reference speech and higher values sampling more from the text. Alpha**: A parameter that determines the timbre of the generated speech, with lower values sampling style based on previous or reference speech and higher values sampling more from the text. Reference**: An optional reference speech audio to copy the style from. Diffusion Steps**: The number of diffusion steps to use in the generation process, with higher values resulting in better quality but longer generation time. Embedding Scale**: A scaling factor for the text embedding, which can be used to produce more pronounced emotion in the generated speech. Outputs Audio**: The generated speech audio in the form of a URI. Capabilities styletts2 is capable of generating human-level TTS synthesis on both single-speaker and multi-speaker datasets. It surpasses human recordings on the LJSpeech dataset and matches human performance on the VCTK dataset. When trained on the LibriTTS dataset, styletts2 also outperforms previous publicly available models for zero-shot speaker adaptation. What can I use it for? styletts2 can be used for a variety of applications that require high-quality text-to-speech generation, such as audiobook production, voice assistants, language learning tools, and more. The ability to control the prosody and timbre of the generated speech, as well as the option to use reference audio, makes styletts2 a versatile tool for creating personalized and expressive speech output. Things to try One interesting aspect of styletts2 is its ability to perform zero-shot speaker adaptation on the LibriTTS dataset. This means that the model can generate speech in the style of speakers it has not been explicitly trained on, by leveraging the diverse speech synthesis offered by the diffusion model. Developers could explore the limits of this zero-shot adaptation and experiment with fine-tuning the model on new speakers to further improve the quality and diversity of the generated speech.

Read more

Updated Invalid Date

AI model preview image

whisper

openai

Total Score

8.6K

Whisper is a general-purpose speech recognition model developed by OpenAI. It is capable of converting speech in audio to text, with the ability to translate the text to English if desired. Whisper is based on a large Transformer model trained on a diverse dataset of multilingual and multitask speech recognition data. This allows the model to handle a wide range of accents, background noises, and languages. Similar models like whisper-large-v3, incredibly-fast-whisper, and whisper-diarization offer various optimizations and additional features built on top of the core Whisper model. Model inputs and outputs Whisper takes an audio file as input and outputs a text transcription. The model can also translate the transcription to English if desired. The input audio can be in various formats, and the model supports a range of parameters to fine-tune the transcription, such as temperature, patience, and language. Inputs Audio**: The audio file to be transcribed Model**: The specific version of the Whisper model to use, currently only large-v3 is supported Language**: The language spoken in the audio, or None to perform language detection Translate**: A boolean flag to translate the transcription to English Transcription**: The format for the transcription output, such as "plain text" Initial Prompt**: An optional initial text prompt to provide to the model Suppress Tokens**: A list of token IDs to suppress during sampling Logprob Threshold**: The minimum average log probability threshold for a successful transcription No Speech Threshold**: The threshold for considering a segment as silence Condition on Previous Text**: Whether to provide the previous output as a prompt for the next window Compression Ratio Threshold**: The maximum compression ratio threshold for a successful transcription Temperature Increment on Fallback**: The temperature increase when the decoding fails to meet the specified thresholds Outputs Transcription**: The text transcription of the input audio Language**: The detected language of the audio (if language input is None) Tokens**: The token IDs corresponding to the transcription Timestamp**: The start and end timestamps for each word in the transcription Confidence**: The confidence score for each word in the transcription Capabilities Whisper is a powerful speech recognition model that can handle a wide range of accents, background noises, and languages. The model is capable of accurately transcribing audio and optionally translating the transcription to English. This makes Whisper useful for a variety of applications, such as real-time captioning, meeting transcription, and audio-to-text conversion. What can I use it for? Whisper can be used in various applications that require speech-to-text conversion, such as: Captioning and Subtitling**: Automatically generate captions or subtitles for videos, improving accessibility for viewers. Meeting Transcription**: Transcribe audio recordings of meetings, interviews, or conferences for easy review and sharing. Podcast Transcription**: Convert audio podcasts to text, making the content more searchable and accessible. Language Translation**: Transcribe audio in one language and translate the text to another, enabling cross-language communication. Voice Interfaces**: Integrate Whisper into voice-controlled applications, such as virtual assistants or smart home devices. Things to try One interesting aspect of Whisper is its ability to handle a wide range of languages and accents. You can experiment with the model's performance on audio samples in different languages or with various background noises to see how it handles different real-world scenarios. Additionally, you can explore the impact of the different input parameters, such as temperature, patience, and language detection, on the transcription quality and accuracy.

Read more

Updated Invalid Date

AI model preview image

stable-diffusion

stability-ai

Total Score

107.9K

Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. Developed by Stability AI, it is an impressive AI model that can create stunning visuals from simple text prompts. The model has several versions, with each newer version being trained for longer and producing higher-quality images than the previous ones. The main advantage of Stable Diffusion is its ability to generate highly detailed and realistic images from a wide range of textual descriptions. This makes it a powerful tool for creative applications, allowing users to visualize their ideas and concepts in a photorealistic way. The model has been trained on a large and diverse dataset, enabling it to handle a broad spectrum of subjects and styles. Model inputs and outputs Inputs Prompt**: The text prompt that describes the desired image. This can be a simple description or a more detailed, creative prompt. Seed**: An optional random seed value to control the randomness of the image generation process. Width and Height**: The desired dimensions of the generated image, which must be multiples of 64. Scheduler**: The algorithm used to generate the image, with options like DPMSolverMultistep. Num Outputs**: The number of images to generate (up to 4). Guidance Scale**: The scale for classifier-free guidance, which controls the trade-off between image quality and faithfulness to the input prompt. Negative Prompt**: Text that specifies things the model should avoid including in the generated image. Num Inference Steps**: The number of denoising steps to perform during the image generation process. Outputs Array of image URLs**: The generated images are returned as an array of URLs pointing to the created images. Capabilities Stable Diffusion is capable of generating a wide variety of photorealistic images from text prompts. It can create images of people, animals, landscapes, architecture, and more, with a high level of detail and accuracy. The model is particularly skilled at rendering complex scenes and capturing the essence of the input prompt. One of the key strengths of Stable Diffusion is its ability to handle diverse prompts, from simple descriptions to more creative and imaginative ideas. The model can generate images of fantastical creatures, surreal landscapes, and even abstract concepts with impressive results. What can I use it for? Stable Diffusion can be used for a variety of creative applications, such as: Visualizing ideas and concepts for art, design, or storytelling Generating images for use in marketing, advertising, or social media Aiding in the development of games, movies, or other visual media Exploring and experimenting with new ideas and artistic styles The model's versatility and high-quality output make it a valuable tool for anyone looking to bring their ideas to life through visual art. By combining the power of AI with human creativity, Stable Diffusion opens up new possibilities for visual expression and innovation. Things to try One interesting aspect of Stable Diffusion is its ability to generate images with a high level of detail and realism. Users can experiment with prompts that combine specific elements, such as "a steam-powered robot exploring a lush, alien jungle," to see how the model handles complex and imaginative scenes. Additionally, the model's support for different image sizes and resolutions allows users to explore the limits of its capabilities. By generating images at various scales, users can see how the model handles the level of detail and complexity required for different use cases, such as high-resolution artwork or smaller social media graphics. Overall, Stable Diffusion is a powerful and versatile AI model that offers endless possibilities for creative expression and exploration. By experimenting with different prompts, settings, and output formats, users can unlock the full potential of this cutting-edge text-to-image technology.

Read more

Updated Invalid Date

↗️

whisper

soykertje

Total Score

3

Whisper is a state-of-the-art speech recognition model developed by OpenAI. It is capable of transcribing audio into text with high accuracy, making it a valuable tool for a variety of applications. The model is implemented as a Cog model by the maintainer soykertje, allowing it to be easily integrated into various projects. Similar models like Whisper, Whisper Diarization, Whisper Large v3, WhisperSpeech Small, and WhisperX Spanish offer different variations and capabilities, catering to diverse speech recognition needs. Model inputs and outputs The Whisper model takes an audio file as input and generates a text transcription of the speech. The model also supports additional options, such as language specification, translation, and adjusting parameters like temperature and patience for the decoding process. Inputs Audio**: The audio file to be transcribed Model**: The specific Whisper model to use Language**: The language spoken in the audio Translate**: Whether to translate the text to English Transcription**: The format for the transcription (e.g., plain text) Temperature**: The temperature to use for sampling Patience**: The patience value to use in beam decoding Suppress Tokens**: A comma-separated list of token IDs to suppress during sampling Word Timestamps**: Whether to include word-level timestamps in the transcription Logprob Threshold**: The threshold for the average log probability to consider the decoding as successful No Speech Threshold**: The threshold for the probability of the token to consider the segment as silence Condition On Previous Text**: Whether to provide the previous output as a prompt for the next window Compression Ratio Threshold**: The threshold for the gzip compression ratio to consider the decoding as successful Temperature Increment On Fallback**: The temperature increase when falling back due to the above thresholds Outputs The transcribed text, with optional formatting and additional information such as word-level timestamps. Capabilities Whisper is a powerful speech recognition model that can accurately transcribe a wide range of audio content, including interviews, lectures, and spontaneous conversations. The model's ability to handle various accents, background noise, and speaker variations makes it a versatile tool for a variety of applications. What can I use it for? The Whisper model can be utilized in a range of applications, such as: Automated transcription of audio recordings for content creators, journalists, or researchers Real-time captioning for video conferencing or live events Voice-to-text conversion for accessibility purposes or hands-free interaction Language translation services, where the transcribed text can be further translated Developing voice-controlled interfaces or intelligent assistants Things to try Experimenting with the various input parameters of the Whisper model can help fine-tune the transcription quality for specific use cases. For example, adjusting the temperature and patience values can influence the model's sampling behavior, leading to more fluent or more conservative transcriptions. Additionally, leveraging the word-level timestamps can enable synchronized subtitles or captions in multimedia applications.

Read more

Updated Invalid Date