Maintainer: spaablauw

Total Score


Last updated 5/28/2024


Model LinkView on HuggingFace
API SpecView on HuggingFace
Github LinkNo Github link provided
Paper LinkNo paper link provided

Create account to get full access


If you already have an account, we'll log you in

Model overview

VintageHelper is a Stable Diffusion 2.0/2.1 model developed by spaablauw that aims to give generated images a nostalgic, analog feel. It focuses on creating bokeh, color grading, depth of field, and composition, while adding grain and imperfections. This model can be compared to similar models like CinemaHelper and PhotoHelper also created by spaablauw, which enhance images in different ways to achieve a cinematic or photorealistic look.

Model inputs and outputs

The VintageHelper model takes standard Stable Diffusion 2.0/2.1 image generation prompts as input and outputs images with a vintage, analog aesthetic. The model was trained on a set of 104 images that were carefully curated and captioned using BLIP.


  • Text prompts for Stable Diffusion 2.0/2.1 image generation


  • Images with a vintage, analog feel, including:
    • Bokeh and depth of field effects
    • Muted, color-graded tones
    • Grain and imperfections
    • Unique composition and framing


The VintageHelper model excels at generating images with a nostalgic, vintage look and feel. It can transform ordinary Stable Diffusion outputs into visually striking, analog-inspired creations. The model's focus on elements like bokeh, color grading, and composition helps to create a cohesive and visually compelling aesthetic.

What can I use it for?

The VintageHelper model can be a valuable tool for creators and artists looking to add a vintage, analog-inspired feel to their images. This could be useful for a variety of applications, such as:

  • Enhancing product photography with a retro vibe
  • Creating visually striking concept art or illustrations with a nostalgic aesthetic
  • Generating unique social media content or backgrounds with a vintage flair

Things to try

When using VintageHelper, try experimenting with prompts that play to its strengths, such as those that involve depth of field, bokeh, and color grading. You can also combine it with other models like CinemaHelper or PhotoHelper to achieve a more tailored visual style. Additionally, consider adjusting the model's weight in your prompt to fine-tune the intensity of the vintage effect.

This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models




Total Score


CinemaHelper is a Stable Diffusion model trained by spaablauw to generate images with a cinematic, photographic look and feel. It is similar to other models like PhotoHelper, which is also trained by spaablauw with the goal of producing photorealistic images. CinemaHelper excels at generating images with nice bokeh, grain, depth of field, soft lighting, and muted colors that evoke a cinematic aesthetic. Model inputs and outputs CinemaHelper is an image-to-image model, taking text prompts as input and generating corresponding images as output. The model was trained for 1000 steps using a learning rate of 0.003 for the first half and 0.001 for the second half, with 5 steps of gradient accumulation. Inputs Text prompts describing the desired image, including details like scene, lighting, style, and subject matter Outputs Generated images in 512x512 resolution that match the input prompt Capabilities CinemaHelper can generate a wide variety of cinematic images, from portraits with lovely bokeh to action scenes with dramatic lighting. The model is particularly skilled at rendering details like depth of field, anamorphic lens effects, and moody, atmospheric settings. Examples include a portrait of Elsa from Frozen, a rainy city street at night, and a forest scene with Dumbledore. What can I use it for? CinemaHelper would be well-suited for projects that require a cinematic, photographic aesthetic, such as film/TV concept art, album covers, or high-end product photography. The model's ability to render depth, focus, and lighting could make it useful for visualizing scenes or characters. With some fine-tuning, CinemaHelper could potentially be used to enhance real-world photos as well. Things to try To get the best results from CinemaHelper, experiment with prompts that include detailed references to photographic techniques and cinematic elements, such as "anamorphic", "depth of field", "dramatic lighting", or "muted colors". You can also try combining CinemaHelper with other models like PhotoHelper or epic-diffusion to explore different stylistic approaches.

Read more

Updated Invalid Date




Total Score


PhotoHelper is a Stable Diffusion 2.x embedding model created by spaablauw. It is trained on approximately 120 of the maintainer's own photos, half of which are portraits. The goal of this model is to generate photorealistic images with high-quality colors. It works best when users experiment with the weight of the model and include terms related to photography in their prompts. PhotoHelper can be compared to similar models like gfpgan for face restoration, multidiffusion-upscaler for image upscaling and enhancement, and blip-2 for image captioning. Model inputs and outputs PhotoHelper is a text-to-image model, taking text prompts as input and generating photorealistic images as output. The model can handle a wide range of subject matter, from portraits and food photography to landscapes and nature scenes. Inputs Text prompts describing the desired image, including details about photography techniques, equipment, and aesthetics Outputs Photorealistic images generated based on the input text prompt Capabilities PhotoHelper excels at generating high-quality, photorealistic images with a distinct artistic and professional style. The model's training on the maintainer's own photographs allows it to capture nuanced details, such as depth of field, bokeh, and studio lighting, which can result in visually stunning and technically impressive outputs. What can I use it for? PhotoHelper can be used for a variety of applications, such as creating visually striking images for marketing and advertising campaigns, generating concept art for films and games, or producing reference images for artists and designers. The model's focus on photography-related attributes makes it particularly well-suited for tasks like portrait retouching, product photography, and landscape visualization. Things to try To get the best results from PhotoHelper, try experimenting with different photography-related terms in your prompts, such as specific camera models, lens details, and lighting setups. You can also play with the weight of the model to fine-tune the output to your desired aesthetic. Additionally, consider combining PhotoHelper with other models like multidiffusion-upscaler for enhanced resolution and detail.

Read more

Updated Invalid Date

๐Ÿ› ๏ธ



Total Score


FloralMarble is a Stable Diffusion model created by the maintainer spaablauw that generates images of marble statues with a floral, abstract effect. It works well with prompts using the words "flower petals" and can be combined with other embeddings like PhotoHelper and Hyperfluid for additional effects. The model has a strong bias towards humans, so it may require some tinkering to get good results with other subject matters. Model inputs and outputs Inputs Text prompts using words like "flower petals" that work well with the model Ability to combine with other embeddings like PhotoHelper and Hyperfluid for more control over the output Outputs Images of marble statues with an abstract, floral effect Outputs are particularly well-suited for human portraits and figures, though the model can be tweaked to work with other subject matter Capabilities FloralMarble can generate striking, artistic images of marble statues enhanced with abstract floral elements. The model excels at producing dreamy, ethereal portraits and figures, often with water or petal effects. While the output is biased towards humans, the maintainer notes the model can be adjusted to generate more universal results. What can I use it for? The FloralMarble model could be useful for digital artists, designers, and content creators looking to add a unique, artistic flair to their work. The model's strength in portraiture makes it well-suited for creating album covers, book covers, or other editorial imagery. With some tweaking, the model could also be applied to generate abstract, sculptural art pieces or fantasy character designs. Things to try Experiment with combining FloralMarble with other embeddings like PhotoHelper and Hyperfluid to unlock new visual possibilities. Try prompts that push the model beyond its human bias, such as landscapes, animals, or abstract concepts, to see how it performs. The maintainer also suggests trying the 150 or 250 iterations of the model for more controllable results.

Read more

Updated Invalid Date




Total Score


The vintedois-diffusion-v0-2 model is a text-to-image diffusion model developed by 22h. It was trained on a large dataset of high-quality images with simple prompts to generate beautiful images without extensive prompt engineering. The model is similar to the earlier vintedois-diffusion-v0-1 model, but has been further fine-tuned to improve its capabilities. Model Inputs and Outputs Inputs Text Prompts**: The model takes in textual prompts that describe the desired image. These can be simple or more complex, and the model will attempt to generate an image that matches the prompt. Outputs Images**: The model outputs generated images that correspond to the provided text prompt. The images are high-quality and can be used for a variety of purposes. Capabilities The vintedois-diffusion-v0-2 model is capable of generating detailed and visually striking images from text prompts. It performs well on a wide range of subjects, from landscapes and portraits to more fantastical and imaginative scenes. The model can also handle different aspect ratios, making it useful for a variety of applications. What Can I Use It For? The vintedois-diffusion-v0-2 model can be used for a variety of creative and commercial applications. Artists and designers can use it to quickly generate visual concepts and ideas, while content creators can leverage it to produce unique and engaging imagery for their projects. The model's ability to handle different aspect ratios also makes it suitable for use in web and mobile design. Things to Try One interesting aspect of the vintedois-diffusion-v0-2 model is its ability to generate high-fidelity faces with relatively few steps. This makes it well-suited for "dreamboothing" applications, where the model can be fine-tuned on a small set of images to produce highly realistic portraits of specific individuals. Additionally, you can experiment with prepending your prompts with "estilovintedois" to enforce a particular style.

Read more

Updated Invalid Date