neural-chat-7B-v3-1-GGUF

Maintainer: TheBloke

Total Score

56

Last updated 5/27/2024

🔄

PropertyValue
Model LinkView on HuggingFace
API SpecView on HuggingFace
Github LinkNo Github link provided
Paper LinkNo paper link provided

Create account to get full access

or

If you already have an account, we'll log you in

Model overview

The neural-chat-7B-v3-1-GGUF model is a 7B parameter autoregressive language model created by TheBloke. It is a quantized version of Intel's Neural Chat 7B v3-1 model, optimized for efficient inference using the new GGUF format. This model can be used for a variety of text generation tasks, with a particular focus on open-ended conversational abilities.

Similar models provided by TheBloke include the openchat_3.5-GGUF, a 7B parameter model trained on a mix of public datasets, and the Llama-2-7B-chat-GGUF, a 7B parameter model based on Meta's Llama 2 architecture. All of these models leverage the GGUF format for efficient deployment.

Model inputs and outputs

Inputs

  • Text prompts: The model accepts text prompts as input, which it then uses to generate new text.

Outputs

  • Generated text: The model outputs newly generated text, continuing the input prompt in a coherent and contextually relevant manner.

Capabilities

The neural-chat-7B-v3-1-GGUF model is capable of engaging in open-ended conversations, answering questions, and generating human-like text on a variety of topics. It demonstrates strong language understanding and generation abilities, and can be used for tasks like chatbots, content creation, and language modeling.

What can I use it for?

This model could be useful for building conversational AI assistants, virtual companions, or creative writing tools. Its capabilities make it well-suited for tasks like:

  • Chatbots and virtual assistants: The model's conversational abilities allow it to engage in natural dialogue, answer questions, and assist users.
  • Content generation: The model can be used to generate articles, stories, poems, or other types of written content.
  • Language modeling: The model's strong text generation abilities make it useful for applications that require understanding and generating human-like language.

Things to try

One interesting aspect of this model is its ability to engage in open-ended conversation while maintaining a coherent and contextually relevant response. You could try prompting the model with a range of topics, from creative writing prompts to open-ended questions, and see how it responds. Additionally, you could experiment with different techniques for guiding the model's output, such as adjusting the temperature or top-k/top-p sampling parameters.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

💬

openchat_3.5-GGUF

TheBloke

Total Score

125

openchat_3.5-GGUF is a 7B parameter language model created by TheBloke and based on the OpenChat 3.5 model. It uses the new GGUF format, which offers advantages over the previous GGML format. The model has been quantized using hardware provided by Massed Compute, with a variety of quantization options available ranging from 2-bit to 8-bit. This allows for models tailored to different use cases in terms of size, speed, and quality tradeoffs. Similar models available include the Llama-2-7B-Chat-GGUF, Llama-2-13B-chat-GGUF, and Llama-2-70B-Chat-GGUF models, also created by TheBloke. Model inputs and outputs openchat_3.5-GGUF is a text-to-text model, taking text as input and generating text as output. The model is optimized for dialogue and chat use cases. Inputs Text prompt to continue or respond to Outputs Continuation or response text generated by the model Capabilities openchat_3.5-GGUF is capable of engaging in dialogue, answering questions, and generating coherent and contextual responses. It has been fine-tuned on chat data to improve its performance in interactive conversation. The model can handle a wide range of topics and tasks, from open-ended discussions to task-oriented exchanges. What can I use it for? openchat_3.5-GGUF can be used to build chat-based AI assistants, language generation tools, and interactive applications. Its capabilities make it well-suited for customer service, educational applications, creative writing assistance, and more. The model's quantization options allow users to find the right balance between model size, speed, and quality for their specific use case. Things to try One interesting aspect of openchat_3.5-GGUF is its ability to handle extended sequences, with the necessary RoPE scaling parameters automatically read from the GGUF files and set by the llama.cpp library. This allows for generation of longer and more coherent responses, which could be useful for tasks like story generation or task-oriented dialogue.

Read more

Updated Invalid Date

🖼️

Llama-2-7B-Chat-GGUF

TheBloke

Total Score

377

The Llama-2-7B-Chat-GGUF model is a 7 billion parameter large language model created by Meta. It is part of the Llama 2 family of models, which range in size from 7 billion to 70 billion parameters. The Llama 2 models are designed for dialogue use cases and have been fine-tuned using supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align them to human preferences for helpfulness and safety. Compared to open-source chat models, the Llama-2-Chat models outperform on many benchmarks and are on par with some popular closed-source models like ChatGPT and PaLM in human evaluations. The model is maintained by TheBloke, who has generously provided GGUF format versions of the model with various quantization levels to enable efficient CPU and GPU inference. Similar GGUF models are also available for the larger 13B and 70B versions of the Llama 2 model. Model inputs and outputs Inputs Text**: The model takes text prompts as input, which can be anything from a single question to multi-turn conversational exchanges. Outputs Text**: The model generates text continuations in response to the input prompt. This can range from short, concise responses to more verbose, multi-sentence outputs. Capabilities The Llama-2-7B-Chat-GGUF model is capable of engaging in open-ended dialogue, answering questions, and generating text on a wide variety of topics. It demonstrates strong performance on tasks like commonsense reasoning, world knowledge, reading comprehension, and mathematical problem solving. Compared to earlier versions of the Llama model, the Llama 2 chat models also show improved safety and alignment with human preferences. What can I use it for? The Llama-2-7B-Chat-GGUF model can be used for a variety of natural language processing tasks, such as building chatbots, question-answering systems, text summarization tools, and creative writing assistants. Given its strong performance on benchmarks, it could be a good starting point for building more capable AI assistants. The quantized GGUF versions provided by TheBloke also make the model accessible for deployment on a wide range of hardware, from CPUs to GPUs. Things to try One interesting thing to try with the Llama-2-7B-Chat-GGUF model is to engage it in multi-turn dialogues and observe how it maintains context and coherence over the course of a conversation. You could also experiment with providing the model with prompts that require reasoning about hypotheticals or abstract concepts, and see how it responds. Additionally, you could try fine-tuning or further training the model on domain-specific data to see if you can enhance its capabilities for particular applications.

Read more

Updated Invalid Date

🤖

Llama-2-13B-chat-GGUF

TheBloke

Total Score

185

The Llama-2-13B-chat-GGUF model is a 13 billion parameter large language model created by TheBloke that is optimized for conversational tasks. It is based on Meta's Llama 2 model, which is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. TheBloke has provided GGUF format model files, which is a new format introduced by the llama.cpp team on August 21st 2023 that supersedes the previous GGML format. Similar models provided by TheBloke include the Llama-2-7B-Chat-GGML and Llama-2-13B-GGML models, which use the older GGML format. TheBloke has also provided a range of quantized versions of these models in both GGML and GGUF formats to optimize for performance on different hardware. Model inputs and outputs Inputs Text prompts**: The model accepts text prompts as input, which can include instructions, queries, or any other natural language text. Outputs Generated text**: The model outputs generated text, continuing the input prompt in a coherent and contextual manner. The output can be used for a variety of language generation tasks such as dialogue, story writing, and answering questions. Capabilities The Llama-2-13B-chat-GGUF model is particularly adept at conversational tasks, as it has been fine-tuned by TheBloke specifically for chat applications. It can engage in open-ended dialogues, answer follow-up questions, and provide helpful and informative responses. Compared to open-source chat models, the Llama-2-Chat series from Meta has been shown to outperform on many benchmarks and provide outputs that are on par with popular closed-source models like ChatGPT and PaLM in terms of helpfulness and safety. What can I use it for? The Llama-2-13B-chat-GGUF model can be used for a wide variety of language generation tasks, but it is particularly well-suited for building conversational AI assistants and chatbots. Some potential use cases include: Customer service chatbots**: Deploying the model as a virtual customer service agent to handle queries, provide information, and guide users through processes. Intelligent personal assistants**: Integrating the model into smart home devices, productivity apps, or other applications to provide a natural language interface. Dialogue systems**: Building interactive storytelling experiences, roleplaying games, or other applications that require fluent and contextual dialogue. Things to try One interesting aspect of the Llama-2-Chat models is their ability to maintain context and engage in multi-turn dialogues. Try providing the model with a sequence of related prompts and see how it responds, building on the previous context. You can also experiment with different temperature and repetition penalty settings to adjust the creativity and coherence of the generated outputs. Another thing to explore is the model's performance on more specialized tasks, such as code generation, problem-solving, or creative writing. While the Llama-2-Chat models are primarily designed for conversational tasks, they may still demonstrate strong capabilities in these areas due to the breadth of their training data.

Read more

Updated Invalid Date

📈

CausalLM-14B-GGUF

TheBloke

Total Score

116

The CausalLM-14B-GGUF is a 14B parameter language model created by CausalLM and quantized into the GGUF format by TheBloke. This model was generously supported by a grant from andreessen horowitz (a16z). It is similar in scale and capabilities to other large language models like Llama-2-13B-chat-GGUF and Llama-2-7B-Chat-GGUF, also quantized by TheBloke. Model inputs and outputs The CausalLM-14B-GGUF is a text-to-text model, taking text as input and generating text as output. It can be used for a variety of natural language processing tasks. Inputs Unconstrained free-form text input Outputs Unconstrained free-form text output Capabilities The CausalLM-14B-GGUF model is a powerful language model capable of generating human-like text. It can be used for tasks like language translation, text summarization, question answering, and creative writing. The model has been optimized for safety and helpfulness, making it suitable for use in conversational AI assistants. What can I use it for? You can use the CausalLM-14B-GGUF model for a wide range of natural language processing tasks. Some potential use cases include: Building conversational AI assistants Automating content creation for blogs, social media, and marketing materials Enhancing customer service chatbots Developing language learning applications Improving text summarization and translation Things to try One interesting thing to try with the CausalLM-14B-GGUF model is using it for open-ended creative writing. The model's ability to generate coherent and imaginative text can be a great starting point for story ideas, poetry, or other creative projects. You can also experiment with fine-tuning the model on specific datasets or prompts to tailor its capabilities for your needs.

Read more

Updated Invalid Date