Llama-2-7b-chat-hf
Maintainer: meta-llama
3.5K
⚙️
Property | Value |
---|---|
Run this model | Run on HuggingFace |
API spec | View on HuggingFace |
Github link | No Github link provided |
Paper link | No paper link provided |
Create account to get full access
Model overview
Llama-2-7b-chat-hf
is a 7 billion parameter generative text model developed and released by Meta. It is part of the Llama 2 family of large language models, which range in size from 7 billion to 70 billion parameters. The Llama 2 models are trained on a new mix of publicly available online data and fine-tuned for dialogue use cases using supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF). Compared to the pretrained Llama-2-7b
model, the Llama-2-7b-chat-hf
model is specifically optimized for chat and assistant-like applications.
Model inputs and outputs
Inputs
- The
Llama-2-7b-chat-hf
model takes text as input.
Outputs
- The model generates text as output.
Capabilities
The Llama 2 family of models, including Llama-2-7b-chat-hf
, have shown strong performance on a variety of academic benchmarks, outperforming many open-source chat models. The 70B parameter Llama 2 model in particular achieved top scores on commonsense reasoning, world knowledge, reading comprehension, and mathematical reasoning tasks. The fine-tuned chat models like Llama-2-7b-chat-hf
are also evaluated to be on par with popular closed-source models like ChatGPT and PaLM in terms of helpfulness and safety, as measured by human evaluations.
What can I use it for?
The Llama-2-7b-chat-hf
model is intended for commercial and research use in English, with a focus on assistant-like chat applications. Developers can use the model to build conversational AI agents that can engage in helpful and safe dialogue. The model can also be adapted for a variety of natural language generation tasks beyond just chat, such as question answering, summarization, and creative writing.
Things to try
One key aspect of the Llama-2-7b-chat-hf
model is the specific formatting required to get the expected chat-like features and performance. This includes using INST
and <<SYS>>
tags, BOS
and EOS
tokens, and proper whitespacing and linebreaks in the input. Developers should review the reference code provided in the Llama GitHub repository to ensure they are properly integrating the model for chat use cases.
This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!
Related Models
📉
Llama-2-7b-hf
1.4K
Llama-2-7b-hf is a 7 billion parameter generative language model developed and released by Meta. It is part of the Llama 2 family of models, which range in size from 7 billion to 70 billion parameters. The Llama 2 models are trained on a new mix of publicly available online data and use an optimized transformer architecture. The tuned versions, called Llama-2-Chat, are further fine-tuned using supervised fine-tuning and reinforcement learning with human feedback to optimize for helpfulness and safety. These models are intended to outperform open-source chat models on many benchmarks. The Llama-2-70b-chat-hf model is a 70 billion parameter version of the Llama 2 family that is fine-tuned specifically for dialogue use cases, also developed and released by Meta. Both the 7B and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. Model inputs and outputs Inputs Text prompts Outputs Generated text continuations Capabilities Llama-2-7b-hf is a powerful generative language model capable of producing high-quality text on a wide range of topics. It can be used for tasks like summarization, language translation, question answering, and creative writing. The fine-tuned Llama-2-Chat models are particularly adept at engaging in open-ended dialogue and assisting with task completion. What can I use it for? Llama-2-7b-hf and the other Llama 2 models can be used for a variety of commercial and research applications, including chatbots, content generation, language understanding, and more. The Llama-2-Chat models are well-suited for building assistant-like applications that require helpful and safe responses. To get started, you can fine-tune the models on your own data or use them directly for inference. Meta provides a custom commercial license for the Llama 2 models, which you can access by visiting the website and agreeing to the terms. Things to try One interesting aspect of the Llama 2 models is their ability to scale in size while maintaining strong performance. The 70 billion parameter version of the model significantly outperforms the 7 billion version on many benchmarks, highlighting the value of large language models. Developers could experiment with using different sized Llama 2 models for their specific use cases to find the right balance of performance and resource requirements. Another avenue to explore is the safety and helpfulness of the Llama-2-Chat models. The developers have put a strong emphasis on aligning these models to human preferences, and it would be interesting to see how they perform in real-world applications that require reliable and trustworthy responses.
Updated Invalid Date
👁️
Llama-2-13b-chat-hf
948
The Llama-2-13b-chat-hf is a version of Meta's Llama 2 large language model, a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This specific 13 billion parameter model has been fine-tuned for dialogue use cases and converted for the Hugging Face Transformers format. The Llama-2-70b-chat-hf and Llama-2-7b-hf models are other variations in the Llama 2 family. Model Inputs and Outputs The Llama-2-13b-chat-hf model takes in text as input and generates text as output. It is an auto-regressive language model that uses an optimized transformer architecture. The fine-tuned versions like this one have been further trained using supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align the model to human preferences for helpfulness and safety. Inputs Text prompts Outputs Generated text Capabilities The Llama-2-13b-chat-hf model is capable of a variety of natural language generation tasks, from open-ended dialogue to specific prompts. It outperforms open-source chat models on most benchmarks that Meta has tested, and its performance on human evaluations for helpfulness and safety is on par with models like ChatGPT and PaLM. What Can I Use It For? The Llama-2-13b-chat-hf model is intended for commercial and research use in English. The fine-tuned chat versions are well-suited for building assistant-like applications, while the pretrained models can be adapted for a range of natural language tasks. Some potential use cases include: Building AI assistants and chatbots for customer service, personal productivity, and more Generating creative content like stories, dialogue, and poetry Summarizing text and answering questions Providing language models for downstream applications like translation, question answering, and code generation Things to Try One interesting aspect of the Llama 2 models is the use of Grouped-Query Attention (GQA) in the larger 70 billion parameter version. This technique improves the model's inference scalability, allowing for faster generation without sacrificing performance. Another key feature is the careful fine-tuning and safety testing that Meta has done on the chat-focused versions of Llama 2. Developers should still exercise caution and perform their own safety evaluations, but these models show promising results in terms of helpfulness and reducing harmful outputs.
Updated Invalid Date
🤯
Llama-2-70b-chat-hf
2.1K
Llama-2-70b-chat-hf is a 70 billion parameter language model from Meta, fine-tuned for dialogue use cases. It is part of the Llama 2 family of models, which also includes smaller versions of 7B and 13B parameters as well as fine-tuned "chat" variants. According to the maintainer meta-llama, the Llama-2-Chat models outperform open-source chat models on most benchmarks and are on par with some popular closed-source models like ChatGPT and PaLM in terms of helpfulness and safety. Model inputs and outputs Inputs The model accepts text input only. Outputs The model generates text output only. Capabilities The Llama-2-70b-chat-hf model is capable of engaging in open-ended dialogue, answering questions, and generating human-like text across a variety of topics. It has been fine-tuned to provide helpful and safe responses, making it suitable for use cases like virtual assistants, chatbots, and language generation. What can I use it for? The Llama-2-70b-chat-hf model could be used to build conversational AI applications, such as virtual assistants or chatbots, that can engage in open-ended dialogue with users. It could also be used for text generation tasks like summarization, creative writing, or content creation. However, as with any large language model, care should be taken to ensure its outputs are aligned with intended use cases and do not contain harmful or biased content. Things to try One interesting thing to try with Llama-2-70b-chat-hf is exploring its capabilities in multi-turn dialogue. By providing it with context from previous exchanges, you can see how it maintains coherence and builds upon the conversation. Additionally, you could experiment with prompting the model to take on different personas or styles of communication to observe how it adapts its language.
Updated Invalid Date
🔎
Llama-2-7b-chat
507
The Llama-2-7b-chat model is part of the Llama 2 family of large language models (LLMs) developed and publicly released by Meta. Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This 7B fine-tuned model is optimized for dialogue use cases. The Llama-2-Chat models outperform open-source chat models on most benchmarks and are on par with popular closed-source models like ChatGPT and PaLM in human evaluations for helpfulness and safety. Model inputs and outputs Inputs The model accepts text input only. Outputs The model generates text output only. Capabilities The Llama-2-7b-chat model demonstrates strong performance on a variety of academic benchmarks including commonsense reasoning, world knowledge, reading comprehension, and math. It also scores well on safety metrics, producing fewer toxic generations and more truthful and informative outputs compared to earlier Llama models. What can I use it for? The Llama-2-7b-chat model is intended for commercial and research use in English. The fine-tuned chat models are optimized for assistant-like dialogue, while the pretrained Llama 2 models can be adapted for a variety of natural language generation tasks. Developers should carefully review the Responsible Use Guide before deploying the model in any applications. Things to try Llama-2-Chat models demonstrate strong performance on tasks like open-ended conversation, question answering, and task completion. Developers may want to explore using the model for chatbot or virtual assistant applications, or fine-tuning it further on domain-specific data to tackle specialized language generation challenges.
Updated Invalid Date