Hermes-2-Pro-Mistral-7B
Maintainer: NousResearch - Last updated 5/27/2024
🏋️
Model overview
The Hermes-2-Pro-Mistral-7B
is an upgraded and retrained version of the Nous Hermes 2 model. It was developed by NousResearch and includes an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset. This new version of Hermes maintains its excellent general task and conversation capabilities, but also excels at Function Calling, JSON Structured Outputs, and has improved on several other metrics.
The Hermes-2-Pro-Mistral-7B
model takes advantage of a special system prompt and multi-turn function calling structure with a new chatml role to make function calling reliable and easy to parse. It was developed in collaboration with interstellarninja and Fireworks.AI.
Model inputs and outputs
Inputs
- Natural language instructions and prompts
Outputs
- Natural language responses
- Structured JSON outputs
- Reliable function calls
Capabilities
The Hermes-2-Pro-Mistral-7B
model has excellent general task and conversation capabilities, and also excels at function calling and producing structured JSON outputs. It scored 90% on a function calling evaluation and 84% on a structured JSON Output evaluation.
What can I use it for?
The Hermes-2-Pro-Mistral-7B
model can be used for a variety of tasks, including general language understanding and generation, task completion, and structured data output. Its strong performance on function calling and JSON output makes it well-suited for applications that require reliable and interpretable machine-generated responses, such as chatbots, virtual assistants, and data processing pipelines.
Things to try
One interesting thing to try with the Hermes-2-Pro-Mistral-7B
model is exploring its capabilities around function calling and structured JSON output. The model's specialized prompt and multi-turn format for these tasks could enable novel applications that combine natural language interaction with reliable programmatic control and data manipulation.
This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!
464
Related Models
👨🏫
209
Hermes-2-Pro-Mistral-7B-GGUF
NousResearch
The Hermes-2-Pro-Mistral-7B-GGUF model is an upgraded version of the Nous Hermes 2 language model, developed by NousResearch. It is a 7 billion parameter model that has been fine-tuned on additional datasets, including a Function Calling and JSON Mode dataset, to improve its capabilities in those areas. Compared to the original Nous Hermes 2 model, this model maintains excellent general task and conversation abilities while also excelling at Function Calling and structured JSON outputs. Model inputs and outputs Inputs Free-form text**: The model can take in free-form text prompts or questions as input. Function call requests**: The model can process function call requests using a specific input format, where the requested function and its arguments are provided in a JSON object. JSON data**: The model can take in JSON data as input and generate structured responses. Outputs General text responses**: The model can generate coherent and contextual text responses to a wide variety of prompts and questions. Function call results**: The model can execute function calls and return the results in a structured format. Structured JSON outputs**: The model can generate JSON outputs that adhere to a specified schema. Capabilities The Hermes-2-Pro-Mistral-7B-GGUF model excels at general language understanding and generation tasks, as well as specialized capabilities such as Function Calling and structured JSON output. It has been trained to reliably execute function calls and generate JSON responses that follow a specific schema, making it well-suited for applications that require these capabilities. What can I use it for? The Hermes-2-Pro-Mistral-7B-GGUF model can be used for a variety of applications, including: Conversational AI**: The model's strong general language abilities make it suitable for building chatbots and virtual assistants that can engage in natural conversations. Task automation**: The model's Function Calling capabilities can be leveraged to automate various tasks, such as data processing, API integration, and report generation. Data visualization**: The model's ability to generate structured JSON outputs can be used to create data visualization tools and dashboards. Knowledge integration**: The model's broad knowledge base can be used to build applications that require integrating and reasoning over different types of information. Things to try One interesting thing to try with the Hermes-2-Pro-Mistral-7B-GGUF model is to explore its ability to handle multi-turn function calls. By using the provided prompt format, you can engage the model in a structured dialogue where it can execute a series of related function calls to solve more complex problems. This can be particularly useful for building applications that require a high degree of interactivity and task-oriented capabilities. Another interesting aspect to explore is the model's performance on specialized tasks, such as code generation, technical writing, or scientific reasoning. The model's strong language understanding and generation abilities, combined with its structured output capabilities, may make it well-suited for these types of applications.
Read moreUpdated 5/28/2024
🧠
351
Hermes-2-Pro-Llama-3-8B
NousResearch
The Hermes-2-Pro-Llama-3-8B model is an upgraded, retrained version of the original Nous Hermes 2 model. It was developed by NousResearch and consists of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset. Compared to the original Hermes 2, this new version maintains excellent general task and conversation capabilities, while also excelling at Function Calling, JSON Structured Outputs, and other key metrics. The Hermes-2-Pro-Mistral-7B and Hermes-2-Pro-Mistral-7B-GGUF models are similar, also developed by NousResearch. The 7B version uses the Mistral architecture, while the Llama-3 8B version uses the Llama architecture. Both models leverage the same dataset and fine-tuning approach to provide powerful language understanding and generation capabilities. Model inputs and outputs Inputs Text prompts**: The model accepts natural language text prompts as input, which can include instructions, questions, or conversational dialogue. Function call inputs**: The model can also accept structured function call inputs, where the user specifies the function name and arguments to be executed. JSON schema**: For structured output mode, the model expects the user to provide a JSON schema that defines the desired output format. Outputs Natural language responses**: The model generates coherent, contextually relevant natural language responses to the provided prompts. Structured function call outputs**: When provided with a function call, the model will output the result of executing that function, formatted as a JSON object. Structured JSON outputs**: When prompted with a JSON schema, the model will generate a JSON object that adheres to the specified structure. Capabilities The Hermes-2-Pro-Llama-3-8B model excels at a wide range of language tasks, including general conversation, task completion, and structured data processing. It has been evaluated to have 91% accuracy on function calling tasks and 84% accuracy on JSON structured output tasks, demonstrating its strong capabilities in these areas. Some key capabilities of the model include: Engaging in natural language conversations and providing helpful, informative responses Executing specific functions or tasks based on provided inputs and returning the results in a structured format Generating JSON outputs that adhere to a predefined schema, enabling integration with downstream applications that require structured data What can I use it for? The Hermes-2-Pro-Llama-3-8B model could be useful for a variety of applications that require advanced language understanding and generation, such as: Conversational assistants**: The model's strong conversational abilities make it well-suited for building chatbots, virtual assistants, and other interactive applications. Task automation**: The model's function calling capabilities allow it to be integrated into workflows that require the execution of specific tasks or the generation of structured data outputs. Data processing and transformation**: The model's structured output generation capabilities can be leveraged to convert unstructured text into formatted data, facilitating integration with other systems and applications. Things to try One interesting aspect of the Hermes-2-Pro-Llama-3-8B model is its ability to handle multi-turn function calling interactions. By using the provided system prompt and structured input format, users can engage the model in a back-and-forth dialogue, where the model executes functions, returns the results, and the user can then provide additional input or instructions. Another compelling feature is the model's structured JSON output generation. By defining a specific JSON schema, users can prompt the model to generate outputs that adhere to a predefined structure, enabling seamless integration with other systems and applications that require structured data. Overall, the Hermes-2-Pro-Llama-3-8B model offers a powerful combination of natural language understanding, task execution, and structured data generation capabilities, making it a versatile tool for a wide range of language-based applications.
Read moreUpdated 6/1/2024
🛸
254
OpenHermes-2-Mistral-7B
teknium
The OpenHermes-2-Mistral-7B is a state-of-the-art language model developed by teknium. It is an advanced version of the previous OpenHermes models, trained on a larger and more diverse dataset of over 900,000 entries. The model has been fine-tuned on the Mistral architecture, giving it enhanced capabilities in areas like natural language understanding and generation. The model is compared to similar offerings like the OpenHermes-2.5-Mistral-7B, Hermes-2-Pro-Mistral-7B, and NeuralHermes-2.5-Mistral-7B. While they share a common lineage, each model has its own unique strengths and capabilities. Model inputs and outputs The OpenHermes-2-Mistral-7B is a text-to-text model, capable of accepting a wide range of natural language inputs and generating relevant and coherent responses. Inputs Natural language prompts**: The model can accept freeform text prompts on a variety of topics, from general conversation to specific tasks and queries. System prompts**: The model also supports more structured system prompts that can provide context and guidance for the desired output. Outputs Natural language responses**: The model generates relevant and coherent text responses to the provided input, demonstrating strong natural language understanding and generation capabilities. Structured outputs**: In addition to open-ended text, the model can also produce structured outputs like JSON objects, which can be useful for certain applications. Capabilities The OpenHermes-2-Mistral-7B model showcases impressive performance across a range of benchmarks and evaluations. On the GPT4All benchmark, it achieves an average score of 73.12, outperforming both the OpenHermes-1 Llama-2 13B and OpenHermes-2 Mistral 7B models. The model also excels on the AGIEval benchmark, scoring 43.07% on average, a significant improvement over the earlier OpenHermes-1 and OpenHermes-2 versions. Its performance on the BigBench Reasoning Test, with an average score of 40.96%, is also noteworthy. In terms of specific capabilities, the model demonstrates strong text generation abilities, handling tasks like creative writing, analytical responses, and open-ended conversation with ease. Its structured outputs, particularly in the form of JSON objects, also make it a useful tool for applications that require more formal, machine-readable responses. What can I use it for? The OpenHermes-2-Mistral-7B model can be a valuable asset for a wide range of applications and use cases. Some potential areas of use include: Content creation**: The model's strong text generation capabilities make it useful for tasks like article writing, blog post generation, and creative storytelling. Intelligent assistants**: The model's natural language understanding and generation abilities make it well-suited for building conversational AI assistants to help users with a variety of tasks. Data analysis and visualization**: The model's ability to produce structured JSON outputs can be leveraged for data processing, analysis, and visualization applications. Educational and research applications**: The model's broad knowledge base and analytical capabilities make it a useful tool for educational purposes, such as question-answering, tutoring, and research support. Things to try One interesting aspect of the OpenHermes-2-Mistral-7B model is its ability to engage in multi-turn dialogues and leverage system prompts to guide the conversation. By using the model's ChatML-based prompt format, users can establish specific roles, rules, and stylistic choices for the model to adhere to, opening up new and creative ways to interact with the AI. Additionally, the model's structured output capabilities, particularly in the form of JSON objects, present opportunities for building applications that require more formal, machine-readable responses. Developers can explore ways to integrate the model's JSON generation into their workflows, potentially automating certain data-driven tasks or enhancing the intelligence of their applications.
Read moreUpdated 5/28/2024
👁️
72
Hermes-2-Theta-Llama-3-70B
NousResearch
The Hermes-2-Theta-Llama-3-70B is a large language model developed by NousResearch. It is a merged and further RLHF'ed version of Nous Research's Hermes 2 Pro model and Meta's Llama-3 Instruct model. This combination allows the model to leverage the strengths of both, resulting in a powerful language model with excellent general task and conversation capabilities. The model is compared to the Llama-3 70B Instruct model, with the Hermes-2-Theta-Llama-3-70B demonstrating improvements in areas like long-form responses, lower hallucination rates, and the absence of OpenAI censorship mechanisms present in the Llama-3 model. Model inputs and outputs Inputs Freeform text**: The model can accept a wide range of natural language inputs, from simple prompts to multi-turn conversations. System prompts**: The model supports advanced system prompts that can guide the model's behavior, role, and output style. Function calls**: The model can handle structured function call inputs to perform specific tasks, like fetching stock data. Outputs Freeform text**: The model generates coherent, context-appropriate text responses. Structured data**: The model can produce structured JSON outputs based on a provided schema, enabling it to return specific, machine-readable information. Function call results**: The model can execute function calls and return the results, allowing it to integrate with external data sources and APIs. Capabilities The Hermes-2-Theta-Llama-3-70B model demonstrates impressive capabilities across a wide range of language tasks. It can engage in natural conversations, provide detailed explanations, generate creative stories, and assist with coding and task completion. The model's ability to handle system prompts and function calls sets it apart, enabling more structured and versatile interactions. What can I use it for? The Hermes-2-Theta-Llama-3-70B model can be a valuable tool for a variety of applications, including: Conversational AI**: Leveraging the model's strong conversational abilities to build interactive chatbots and virtual assistants. Content generation**: Utilizing the model's creative capabilities to generate articles, stories, or other written content. Analytical tasks**: Integrating the model's function call handling to fetch and process data, generate reports, or provide financial insights. Developer assistance**: Tapping into the model's coding and task completion skills to build intelligent coding assistants. Things to try One interesting aspect of the Hermes-2-Theta-Llama-3-70B model is its system prompt support, which enables more structured and guided interactions. You could experiment with different prompts that set the model's role, personality, and task constraints to see how it responds in various scenarios. Another intriguing feature is the model's function call handling. You could try providing the model with different function signatures and see how it interacts with the structured inputs and outputs, potentially integrating it with external data sources or APIs to create powerful task-oriented applications.
Read moreUpdated 7/31/2024