Future-Diffusion

Maintainer: nitrosocke

Total Score

402

Last updated 5/28/2024

⛏️

PropertyValue
Model LinkView on HuggingFace
API SpecView on HuggingFace
Github LinkNo Github link provided
Paper LinkNo paper link provided

Get summaries of the top AI models delivered straight to your inbox:

Model overview

Future-Diffusion is a fine-tuned version of the Stable Diffusion 2.0 base model, trained by nitrosocke on high-quality 3D images with a futuristic sci-fi theme. This model allows users to generate images with a distinct "future style" by incorporating the future style token into their prompts. Compared to similar models like redshift-diffusion-768, Future-Diffusion has a 512x512 resolution, while the redshift model has a higher 768x768 resolution. The Ghibli-Diffusion and Arcane-Diffusion models, on the other hand, are fine-tuned on anime and Arcane-themed images respectively, producing outputs with those distinct visual styles.

Model inputs and outputs

Future-Diffusion is a text-to-image model, taking text prompts as input and generating corresponding images as output. The model was trained using the diffusers-based dreambooth training approach with prior-preservation loss and the train-text-encoder flag.

Inputs

  • Text prompts: Users provide text descriptions to guide the image generation, such as future style [subject] Negative Prompt: duplicate heads bad anatomy for character generation or future style city market street level at night Negative Prompt: blurry fog soft for landscapes.

Outputs

  • Images: The model generates 512x512 or 1024x576 pixel images based on the provided text prompts, with a futuristic sci-fi style.

Capabilities

Future-Diffusion can generate a wide range of images with a distinct futuristic aesthetic, including human characters, animals, vehicles, and landscapes. The model's ability to capture this specific style sets it apart from more generic text-to-image models.

What can I use it for?

The Future-Diffusion model can be useful for various creative and commercial applications, such as:

  • Generating concept art for science fiction stories, games, or films
  • Designing futuristic product visuals or packaging
  • Creating promotional materials or marketing assets with a futuristic flair
  • Exploring and experimenting with novel visual styles and aesthetics

Things to try

One interesting aspect of Future-Diffusion is the ability to combine the "future style" token with other style tokens, such as those from the Ghibli-Diffusion or Arcane-Diffusion models. This can result in unique and unexpected hybrid styles, allowing users to expand their creative possibilities.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

🤷

redshift-diffusion-768

nitrosocke

Total Score

141

The redshift-diffusion-768 model is a fine-tuned version of the Stable Diffusion 2.0 model, trained on high-quality 3D images with a 768x768 pixel resolution. It was developed by the Hugging Face creator nitrosocke. This model can produce images in a unique "redshift style" by using the prompt tokens redshift style. Similar models include the Ghibli-Diffusion, elden-ring-diffusion, mo-di-diffusion, Arcane-Diffusion, and Nitro-Diffusion, all of which are fine-tuned on different art styles and datasets. Model inputs and outputs The redshift-diffusion-768 model takes text prompts as input and generates corresponding images as output. The text prompts can describe a wide variety of subjects, including characters, scenes, and objects, and the model will attempt to render them in the unique "redshift style". Inputs Text prompt**: A description of the desired image, using the redshift style tokens for the specific effect. Outputs Image**: A generated image that matches the provided text prompt, rendered in the "redshift style". Capabilities The redshift-diffusion-768 model can generate highly detailed and visually striking images in a wide range of subjects, from characters and portraits to landscapes and scenes. The "redshift style" gives the images a distinct look, with vibrant colors, strong lighting, and a futuristic or science-fiction aesthetic. What can I use it for? The redshift-diffusion-768 model can be used for a variety of creative and artistic applications, such as concept art, character design, and world-building for science-fiction or fantasy projects. The unique visual style of the model's outputs could also be leveraged for commercial applications, such as product design, advertising, or visual effects. Things to try One interesting aspect of the redshift-diffusion-768 model is its ability to generate highly detailed and visually striking images with a wide range of subjects. Try experimenting with different types of prompts, from detailed character descriptions to abstract or surreal scenes, to see the versatility of the model's capabilities. Additionally, you can try mixing the "redshift style" with other art styles, such as those from the Ghibli-Diffusion or Elden Ring Diffusion models, to create unique and unexpected visual combinations.

Read more

Updated Invalid Date

AI model preview image

stable-diffusion

stability-ai

Total Score

108.1K

Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. Developed by Stability AI, it is an impressive AI model that can create stunning visuals from simple text prompts. The model has several versions, with each newer version being trained for longer and producing higher-quality images than the previous ones. The main advantage of Stable Diffusion is its ability to generate highly detailed and realistic images from a wide range of textual descriptions. This makes it a powerful tool for creative applications, allowing users to visualize their ideas and concepts in a photorealistic way. The model has been trained on a large and diverse dataset, enabling it to handle a broad spectrum of subjects and styles. Model inputs and outputs Inputs Prompt**: The text prompt that describes the desired image. This can be a simple description or a more detailed, creative prompt. Seed**: An optional random seed value to control the randomness of the image generation process. Width and Height**: The desired dimensions of the generated image, which must be multiples of 64. Scheduler**: The algorithm used to generate the image, with options like DPMSolverMultistep. Num Outputs**: The number of images to generate (up to 4). Guidance Scale**: The scale for classifier-free guidance, which controls the trade-off between image quality and faithfulness to the input prompt. Negative Prompt**: Text that specifies things the model should avoid including in the generated image. Num Inference Steps**: The number of denoising steps to perform during the image generation process. Outputs Array of image URLs**: The generated images are returned as an array of URLs pointing to the created images. Capabilities Stable Diffusion is capable of generating a wide variety of photorealistic images from text prompts. It can create images of people, animals, landscapes, architecture, and more, with a high level of detail and accuracy. The model is particularly skilled at rendering complex scenes and capturing the essence of the input prompt. One of the key strengths of Stable Diffusion is its ability to handle diverse prompts, from simple descriptions to more creative and imaginative ideas. The model can generate images of fantastical creatures, surreal landscapes, and even abstract concepts with impressive results. What can I use it for? Stable Diffusion can be used for a variety of creative applications, such as: Visualizing ideas and concepts for art, design, or storytelling Generating images for use in marketing, advertising, or social media Aiding in the development of games, movies, or other visual media Exploring and experimenting with new ideas and artistic styles The model's versatility and high-quality output make it a valuable tool for anyone looking to bring their ideas to life through visual art. By combining the power of AI with human creativity, Stable Diffusion opens up new possibilities for visual expression and innovation. Things to try One interesting aspect of Stable Diffusion is its ability to generate images with a high level of detail and realism. Users can experiment with prompts that combine specific elements, such as "a steam-powered robot exploring a lush, alien jungle," to see how the model handles complex and imaginative scenes. Additionally, the model's support for different image sizes and resolutions allows users to explore the limits of its capabilities. By generating images at various scales, users can see how the model handles the level of detail and complexity required for different use cases, such as high-resolution artwork or smaller social media graphics. Overall, Stable Diffusion is a powerful and versatile AI model that offers endless possibilities for creative expression and exploration. By experimenting with different prompts, settings, and output formats, users can unlock the full potential of this cutting-edge text-to-image technology.

Read more

Updated Invalid Date

Ghibli-Diffusion

nitrosocke

Total Score

607

The Ghibli-Diffusion model is a fine-tuned Stable Diffusion model trained on images from modern anime feature films from Studio Ghibli. This model allows users to generate images in the distinct Ghibli art style by including the ghibli style token in their prompts. The model is maintained by nitrosocke, who has also created similar fine-tuned models like Mo Di Diffusion and Arcane Diffusion. Model inputs and outputs The Ghibli-Diffusion model takes text prompts as input and generates high-quality, Ghibli-style images as output. The model can be used to create a variety of content, including character portraits, scenes, and landscapes. Inputs Text Prompts**: The model accepts text prompts that can include the ghibli style token to indicate the desired art style. Outputs Images**: The model generates images in the Ghibli art style, with a focus on high detail and vibrant colors. Capabilities The Ghibli-Diffusion model is particularly adept at generating character portraits, cars, animals, and landscapes in the distinctive Ghibli visual style. The provided examples showcase the model's ability to capture the whimsical, hand-drawn aesthetic of Ghibli films. What can I use it for? The Ghibli-Diffusion model can be used to create a wide range of Ghibli-inspired content, from character designs and fan art to concept art for animation projects. The model's capabilities make it well-suited for creative applications in the animation, gaming, and digital art industries. Users can also experiment with combining the Ghibli style with other elements, such as modern settings or fantastical elements, to generate unique and imaginative images. Things to try One interesting aspect of the Ghibli-Diffusion model is its ability to generate images with a balance of realism and stylization. Users can try experimenting with different prompts and negative prompts to see how the model handles a variety of subjects and compositions. Additionally, users may want to explore how the model performs when combining the ghibli style token with other artistic styles or genre-specific keywords.

Read more

Updated Invalid Date

🔍

Arcane-Diffusion

nitrosocke

Total Score

749

Arcane-Diffusion is a fine-tuned version of the Stable Diffusion model, trained on images from the TV show Arcane. This model can produce images in the distinctive "Arcane style" by using the tokens arcane style in your prompts. The maintainer nitrosocke has also created other fine-tuned Stable Diffusion models, such as mo-di-diffusion which is trained on images in a "modern Disney style". Model inputs and outputs Arcane-Diffusion is a text-to-image model that takes a text prompt as input and generates a corresponding image as output. The model can be used just like the original Stable Diffusion model, with the addition of the arcane style token to produce images in the Arcane aesthetic. Inputs Text prompt: A text description of the desired image, including the **arcane style token. Outputs Generated image**: An image that corresponds to the input text prompt, rendered in the Arcane art style. Capabilities Arcane-Diffusion can generate a wide variety of Arcane-themed images, from fantastical characters and creatures to elaborate environments and scenes. The model is able to capture the distinct visual style of the Arcane universe, including its unique color palette, lighting, and artistic flourishes. What can I use it for? Arcane-Diffusion can be used to create original artwork and illustrations inspired by the Arcane universe. This could include character designs, background environments, promotional materials, and more. The model can also be used to generate images for creative projects, such as fanart, game assets, or digital art commissions. Things to try One interesting aspect of Arcane-Diffusion is its ability to blend the Arcane art style with other elements. Try combining the arcane style token with prompts that introduce other themes, such as "a magical princess with golden hair, arcane style" or "a cyberpunk city at night, arcane style". This can lead to unique and unexpected results that push the boundaries of the model's capabilities.

Read more

Updated Invalid Date