CodeLlama-7B-Instruct-GGUF

Maintainer: TheBloke

Total Score

106

Last updated 5/28/2024

🏅

PropertyValue
Model LinkView on HuggingFace
API SpecView on HuggingFace
Github LinkNo Github link provided
Paper LinkNo paper link provided

Get summaries of the top AI models delivered straight to your inbox:

Model overview

The CodeLlama-7B-Instruct-GGUF is a large language model created by TheBloke, a prominent AI researcher and model maintainer. This model is based on Meta's CodeLlama 7B Instruct and has been converted to the GGUF format. GGUF is a new model format introduced by the llama.cpp team that offers advantages over the previous GGML format. Similar models maintained by TheBloke include the Llama-2-7B-GGUF and Llama-2-7B-Chat-GGUF.

Model inputs and outputs

Inputs

  • Text prompts for the model to generate from

Outputs

  • Generated text continuation of the input prompt

Capabilities

The CodeLlama-7B-Instruct-GGUF model is capable of a wide range of text-to-text tasks. It can generate human-like text on diverse subjects, answer questions, and complete instructions or tasks described in the input prompt. The model has been trained to follow instructions and behave as a helpful and safe AI assistant.

What can I use it for?

The CodeLlama-7B-Instruct-GGUF model can be used for a variety of applications that require natural language generation, such as chatbots, virtual assistants, content creation, and language learning tools. Developers could integrate this model into their applications to provide users with intelligent and informative responses to queries. Businesses could also leverage the model's capabilities for customer support, marketing, and other business-related tasks.

Things to try

Try providing the model with diverse prompts spanning different topics and genres to see the breadth of its capabilities. You can experiment with instructions, questions, creative writing prompts, and more. Pay attention to the coherence, safety, and relevance of the model's responses. Additionally, consider using this model in combination with other AI tools and techniques to unlock even more powerful applications.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

↗️

CodeLlama-13B-Instruct-GGUF

TheBloke

Total Score

108

The CodeLlama-13B-Instruct-GGUF is a 13-billion parameter large language model created by Meta and maintained by TheBloke. It is designed for general code synthesis and understanding tasks. Similar models in this collection include the CodeLlama-7B-Instruct-GGUF and CodeLlama-34B-Instruct-GGUF, which vary in size and focus. Model inputs and outputs The CodeLlama-13B-Instruct-GGUF model takes in text as input and generates new text as output. It is particularly well-suited for code-related tasks like completion, infilling, and instruction following. The model can handle a wide range of programming languages, not just Python. Inputs Text**: The model accepts natural language text as input, which it can use to generate new text. Outputs Generated text**: The model outputs new text that is coherent, relevant, and tailored to the input prompt. Capabilities The CodeLlama-13B-Instruct-GGUF model has impressive capabilities when it comes to code-related tasks. It can take a partially completed code snippet and intelligently generate the missing portions. It can also translate natural language instructions into working code. Additionally, the model demonstrates strong understanding of programming concepts and can explain coding principles in easy-to-understand terms. What can I use it for? The CodeLlama-13B-Instruct-GGUF model could be useful for a variety of applications, such as building intelligent code assistants, automating software development workflows, and enhancing programming education. Developers could integrate the model into their IDEs or other tools to boost productivity. Businesses could leverage the model to generate custom software solutions more efficiently. Educators could use the model to provide personalized coding support and feedback to students. Things to try One interesting thing to try with the CodeLlama-13B-Instruct-GGUF model is giving it a high-level description of a programming task and seeing the code it generates. For example, you could prompt it to "Write a Python function that calculates the factorial of a given number" and observe the well-structured, syntactically correct code it produces. This demonstrates the model's strong grasp of programming fundamentals and ability to translate natural language into working code.

Read more

Updated Invalid Date

CodeLlama-34B-Instruct-GGUF

TheBloke

Total Score

93

The CodeLlama-34B-Instruct-GGUF is a 34 billion parameter language model created by Meta and fine-tuned by TheBloke for code generation and understanding tasks. It is part of the CodeLlama family of models, which also includes smaller 7B and 13B versions. The model has been converted to the GGUF format, a new and improved version of the GGML format that offers better tokenization and support for special tokens. This model is designed to excel at a variety of code-related tasks, from code completion to infilling and understanding natural language instructions. It is particularly adept at Python, but can also handle other programming languages like C/C++, TypeScript, and Java. Similar models like the CodeLlama-7B-Instruct-GGUF and Phind-CodeLlama-34B-v2-GGUF offer different parameter sizes and capabilities. Model inputs and outputs Inputs The CodeLlama-34B-Instruct-GGUF model accepts text-based input, such as natural language prompts or programming code. Outputs The model generates text-based output, which can include further code, natural language responses, or a combination of both. Capabilities The CodeLlama-34B-Instruct-GGUF model excels at a variety of code-related tasks. It can generate working code snippets to solve coding problems, explain programming concepts in natural language, and even translate between different programming languages. The model's large size and specialized training make it a powerful tool for developers and researchers working on applications that involve code generation, understanding, or analysis. What can I use it for? The CodeLlama-34B-Instruct-GGUF model can be used for a wide range of applications, including: Building intelligent code assistants to help programmers with their daily tasks Automating the generation of boilerplate code or common programming patterns Developing tools for code analysis and refactoring Enhancing educational resources for learning programming languages Powering chatbots or virtual assistants that can understand and generate code The model's GGUF format and support for various client libraries and UI tools make it easy to integrate into a variety of projects and workflows. Things to try One interesting aspect of the CodeLlama-34B-Instruct-GGUF model is its ability to follow natural language instructions and generate code accordingly. Try giving it prompts like "Write a function in Python that calculates the Fibonacci sequence up to a given number" or "Implement a linked list data structure in C++". The model should be able to understand the request and produce the requested code, demonstrating its versatility and code-generation capabilities. Another fascinating aspect is the model's potential for cross-language translation and understanding. You could experiment by providing prompts that mix different programming languages, such as "Translate this Java code to Python" or "Explain the purpose of this TypeScript function in plain English". Observing how the model handles these types of mixed-language scenarios can provide insights into its broader linguistic and coding comprehension abilities.

Read more

Updated Invalid Date

⚙️

CodeLlama-7B-GGUF

TheBloke

Total Score

99

The CodeLlama-7B-GGUF is a 7 billion parameter AI model created by Meta and maintained by TheBloke. It is part of the "Code Llama" family of models designed for code synthesis and understanding tasks. The model is available in GGUF format, a new model file format introduced by the llama.cpp team that offers advantages over the previous GGML format. Similar models include the CodeLlama-7B-Instruct-GGUF, which is optimized for instruction following and safer deployment, and the Llama-2-7B-GGUF, which is part of Meta's Llama 2 family of models. Model inputs and outputs Inputs Text inputs only Outputs Generated text outputs Capabilities The CodeLlama-7B-GGUF model is capable of a variety of code-related tasks, including code completion, infilling, and general understanding. It can handle a range of programming languages and is particularly well-suited for Python. What can I use it for? The CodeLlama-7B-GGUF model can be used for a variety of applications, such as building code assistants, automating code generation, and enhancing code understanding. Developers could integrate the model into their tools and workflows to improve productivity and efficiency. Companies working on AI-powered programming environments could also leverage the model to enhance their offerings. Things to try One interesting aspect of the CodeLlama-7B-GGUF model is its ability to handle extended sequence lengths, thanks to the GGUF format's support for RoPE scaling parameters. This could allow for more complex and contextual code generation tasks. Developers could experiment with prompts that require the model to generate or understand code across multiple lines or even files.

Read more

Updated Invalid Date

🤔

CodeLlama-13B-GGUF

TheBloke

Total Score

54

The CodeLlama-13B-GGUF is a 13-billion parameter large language model developed by Meta and maintained by TheBloke. It is part of the CodeLlama family of models, which also includes 7B and 34B versions. The CodeLlama models are designed for general code synthesis and understanding tasks. This 13B version provides a balance of performance and model size. Similar models from TheBloke include the CodeLlama-7B-GGUF and CodeLlama-34B-GGUF, which offer smaller and larger model sizes respectively. There are also Instruct-tuned versions of the CodeLlama models available, like the CodeLlama-34B-Instruct-GGUF and CodeLlama-7B-Instruct-GGUF. Model inputs and outputs The CodeLlama-13B-GGUF model takes in text as input and generates text as output. It is an autoregressive language model, meaning it produces text one token at a time, based on the previous tokens. Inputs Text**: The model accepts text input, such as programming language code, natural language instructions, or prompts. Outputs Text**: The model generates text, which can include synthesized code, responses to prompts, or continuations of input text. Capabilities The CodeLlama-13B-GGUF model is capable of a variety of text generation tasks, including code completion, code generation, language understanding, and language generation. It can handle a range of programming languages and can be used for tasks like automatically generating code snippets, translating natural language to code, and providing intelligent code assistance. What can I use it for? The CodeLlama-13B-GGUF model can be used in a variety of applications, such as: Code assistants**: Integrating the model into code editors or IDEs to provide intelligent code completion, generation, and understanding capabilities. Automated programming tools**: Building tools that can automatically generate code to solve specific programming problems. Language learning applications**: Developing educational apps that can help users learn programming languages by providing code examples and explanations. Chatbots and virtual assistants**: Incorporating the model's language understanding and generation abilities to build conversational AI agents that can assist users with programming-related tasks. The model's versatility and strong performance make it a valuable tool for developers, researchers, and anyone working on projects that involve programmatic tasks or language-based interactions. Things to try One interesting thing to try with the CodeLlama-13B-GGUF model is to provide it with incomplete code snippets or programming challenges and see how it can complete or solve them. You can also experiment with different prompting techniques, such as asking the model to explain or comment on code, or to generate code that meets specific requirements. Another interesting approach is to fine-tune the model on domain-specific data, such as code from a particular codebase or programming language, to see how it can adapt and improve its performance on tasks related to that domain.

Read more

Updated Invalid Date