Maintainer: stanford-crfm

Total Score


Last updated 5/28/2024


Model LinkView on HuggingFace
API SpecView on HuggingFace
Github LinkNo Github link provided
Paper LinkNo paper link provided

Get summaries of the top AI models delivered straight to your inbox:

Model overview

BioMedLM is a new 2.7 billion parameter language model trained exclusively on biomedical abstracts and papers from The Pile. This GPT-style model can achieve strong results on a variety of biomedical NLP tasks, including a new state of the art performance of 50.3% accuracy on the MedQA biomedical question answering task. The model was a joint collaboration of Stanford CRFM and MosaicML.

Similar models include Meditron-70B, a 70 billion parameter medical language model adapted from Llama-2-70B, and GPT-Neo 2.7B, a 2.7 billion parameter model trained on a diverse dataset by EleutherAI.

Model inputs and outputs


  • Text: BioMedLM takes in text data, such as questions, prompts, or documents related to the biomedical domain.


  • Text: The model generates English-language text in response to the input, such as an answer to a biomedical question or a summary of a document.


BioMedLM can be used for a variety of biomedical NLP tasks, including question answering, summarization, and generation. It has achieved state-of-the-art performance on the MedQA biomedical question answering task, demonstrating its strong capabilities in this domain.

What can I use it for?

Researchers and developers working on biomedical NLP applications can use BioMedLM as a foundation model to build upon. The model's strong performance on tasks like question answering and summarization suggests it could be useful for powering intelligent assistants in the healthcare domain, or for automating tasks like literature review and information extraction.

However, the model's generation capabilities are still being explored, and the maintainers caution that it should not be used for production-level tasks without further testing and development. Users should be aware of the model's potential biases and limitations, and take appropriate measures to ensure safe and responsible use.

Things to try

One interesting aspect of BioMedLM is its exclusive training on biomedical data, in contrast to more general language models that are trained on a wider variety of text. This specialized training could allow the model to develop a deeper understanding of biomedical concepts and terminology, which could be particularly useful for tasks like medical question answering or extraction of information from scientific literature. Developers could explore fine-tuning or prompt engineering strategies to leverage this specialized knowledge.

Another avenue to explore is the model's generation capabilities. While the maintainers caution against using the model for open-ended generation, there may be opportunities to use it in a more controlled way, such as for generating summaries or snippets of text to assist with tasks like literature review or report writing. Careful monitoring and evaluation would be essential to ensure the safety and reliability of such applications.

This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models




Total Score


BioMedGPT-LM-7B is the first large generative language model based on Llama2 that has been fine-tuned on the biomedical domain. It was trained on over 26 billion tokens from millions of biomedical papers in the S2ORC corpus, allowing it to outperform or match human-level performance on several biomedical question-answering benchmarks. This model was developed by PharMolix, and is the language model component of the larger BioMedGPT-10B open-source project. Model inputs and outputs Inputs Text data, primarily focused on biomedical and scientific topics Outputs Generates coherent and informative text in response to prompts, drawing upon its broad knowledge of biomedical concepts and research. Capabilities BioMedGPT-LM-7B can be used for a variety of biomedical natural language processing tasks, such as question answering, summarization, and information extraction from scientific literature. Through its strong performance on benchmarks like PubMedQA, the model has demonstrated its ability to understand and reason about complex biomedical topics. What can I use it for? The BioMedGPT-LM-7B model is well-suited for research and development projects in the biomedical and healthcare domains. Potential use cases include: Powering AI assistants to help clinicians and researchers access relevant biomedical information more efficiently Automating the summarization of scientific papers or clinical notes Enhancing search and retrieval of biomedical literature Generating high-quality text for biomedical education and training materials Things to try One interesting aspect of BioMedGPT-LM-7B is its ability to generate detailed, fact-based responses on a wide range of biomedical topics. Researchers could experiment with prompting the model to explain complex scientific concepts, describe disease mechanisms, or outline treatment guidelines, and observe the model's ability to provide informative and coherent output. Additionally, the model could be evaluated on its capacity to assist with literature reviews, hypothesis generation, and other knowledge-intensive biomedical tasks.

Read more

Updated Invalid Date




Total Score


The microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext model, previously known as "PubMedBERT (abstracts + full text)", is a large neural language model pretrained from scratch using abstracts from PubMed and full-text articles from PubMedCentral. This model achieves state-of-the-art performance on many biomedical NLP tasks and currently holds the top score on the Biomedical Language Understanding and Reasoning Benchmark. Similar models include BiomedNLP-BiomedBERT-base-uncased-abstract, a version of the model trained only on PubMed abstracts, as well as the generative BioGPT models developed by Microsoft. Model inputs and outputs Inputs Arbitrary biomedical text, such as research paper abstracts or clinical notes Outputs Contextual representations of the input text that can be used for a variety of downstream biomedical NLP tasks, such as named entity recognition, relation extraction, and question answering. Capabilities The BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext model is highly capable at understanding and processing biomedical text. It has been shown to outperform previous models on a range of tasks, including relation extraction from clinical text and question answering about biomedical concepts. What can I use it for? This model is well-suited for any biomedical NLP application that requires understanding and reasoning about scientific literature and clinical data. Example use cases include: Extracting insights and relationships from large collections of biomedical papers Answering questions about medical conditions, treatments, and research findings Improving the accuracy of clinical decision support systems Enhancing biomedical text mining and information retrieval Things to try One interesting aspect of this model is its ability to leverage both abstracts and full-text articles during pretraining. You could experiment with using the model for different types of biomedical text, such as clinical notes or patient records, and compare the performance to models trained only on abstracts. Additionally, you could explore fine-tuning the model on specific biomedical tasks to see how it compares to other state-of-the-art approaches.

Read more

Updated Invalid Date




Total Score


BiomedNLP-BiomedBERT-base-uncased-abstract is a biomedical language model developed by Microsoft. It was previously known as "PubMedBERT (abstracts)". This model was pretrained from scratch using abstracts from PubMed, the leading biomedical literature database. Unlike many language models that start from a general-domain corpus and then continue pretraining on domain-specific text, this model was trained entirely on biomedical abstracts. This allows it to better capture the specialized vocabulary and concepts used in the biomedical field. Similar models include BioGPT-Large-PubMedQA, BioGPT-Large, biogpt, and BioMedLM, all of which are biomedical language models trained on domain-specific text. Model inputs and outputs Inputs Text**: The model takes in text data, typically in the form of biomedical abstracts or other domain-specific content. Outputs Encoded text representation**: The model outputs a numerical representation of the input text, which can be used for downstream natural language processing tasks such as text classification, question answering, or named entity recognition. Capabilities BiomedNLP-BiomedBERT-base-uncased-abstract has shown state-of-the-art performance on several biomedical NLP benchmarks, including the Biomedical Language Understanding and Reasoning Benchmark (BLURB). Its specialized pretraining on biomedical abstracts allows it to better capture the nuances of the biomedical domain compared to language models trained on more general text. What can I use it for? The BiomedNLP-BiomedBERT-base-uncased-abstract model can be fine-tuned on a variety of biomedical NLP tasks, such as: Text classification**: Classifying biomedical literature into categories like disease, treatment, or diagnosis. Question answering**: Answering questions about biomedical concepts, treatments, or research findings. Named entity recognition**: Identifying and extracting relevant biomedical entities like drugs, genes, or diseases from text. Researchers and developers in the biomedical and healthcare domains may find this model particularly useful for building advanced natural language processing applications that require a deep understanding of domain-specific terminology and concepts. Things to try One interesting aspect of BiomedNLP-BiomedBERT-base-uncased-abstract is its ability to perform well on biomedical tasks without the need for continued pretraining on general-domain text. This suggests that starting from a model that is already well-versed in the biomedical domain can be more effective than taking a general-purpose model and further pretraining it on biomedical data. Exploring the tradeoffs between these approaches could lead to valuable insights for future model development.

Read more

Updated Invalid Date




Total Score


Llama3-OpenBioLLM-8B is an advanced open-source language model designed specifically for the biomedical domain. Developed by Saama AI Labs, this model leverages cutting-edge techniques to achieve state-of-the-art performance on a wide range of biomedical tasks. It builds upon the powerful foundations of the Meta-Llama-3-8B model, incorporating the DPO dataset and fine-tuning recipe along with a custom diverse medical instruction dataset. Compared to Llama3-OpenBioLLM-70B, the 8B version has a smaller parameter count but still outperforms other open-source biomedical language models of similar scale. It has also demonstrated better results compared to larger proprietary & open-source models like GPT-3.5 on biomedical benchmarks. Model inputs and outputs Inputs Text data from the biomedical domain, such as research papers, clinical notes, and medical literature. Outputs Generated text responses to biomedical queries, questions, and prompts. Summarization of complex medical information. Extraction of biomedical entities, such as diseases, symptoms, and treatments. Classification of medical documents and data. Capabilities Llama3-OpenBioLLM-8B can efficiently analyze and summarize clinical notes, extract key medical information, answer a wide range of biomedical questions, and perform advanced clinical entity recognition. The model's strong performance on domain-specific tasks, such as Medical Genetics and PubMedQA, highlights its ability to effectively capture and apply biomedical knowledge. What can I use it for? Llama3-OpenBioLLM-8B can be a valuable tool for researchers, clinicians, and developers working in the healthcare and life sciences fields. It can be used to accelerate medical research, improve clinical decision-making, and enhance access to biomedical knowledge. Some potential use cases include: Summarizing complex medical records and literature Answering medical queries and providing information to patients or healthcare professionals Extracting relevant biomedical entities from text Classifying medical documents and data Generating medical reports and content Things to try One interesting aspect of Llama3-OpenBioLLM-8B is its ability to leverage its deep understanding of medical terminology and context to accurately annotate and categorize clinical entities. This capability can support various downstream applications, such as clinical decision support, pharmacovigilance, and medical research. You could try experimenting with the model's entity recognition abilities on your own biomedical text data to see how it performs. Another interesting feature is the model's strong performance on biomedical question-answering tasks, such as PubMedQA. You could try prompting the model with a range of medical questions and see how it responds, paying attention to the level of detail and accuracy in the answers.

Read more

Updated Invalid Date