Medalpaca

Rank:

Average Model Cost: $0.0000

Number of Runs: 3,974

Models by this creator

medalpaca-7b

medalpaca-7b

medalpaca

MedAlpaca 7b Table of Contents Model Description Architecture Training DataModel UsageLimitations Model Description Architecture medalpaca-7b is a large language model specifically fine-tuned for medical domain tasks. It is based on LLaMA (Large Language Model Meta AI) and contains 7 billion parameters. The primary goal of this model is to improve question-answering and medical dialogue tasks. Architecture Training Data The training data for this project was sourced from various resources. Firstly, we used Anki flashcards to automatically generate questions, from the front of the cards and anwers from the back of the card. Secondly, we generated medical question-answer pairs from Wikidoc. We extracted paragraphs with relevant headings, and used Chat-GPT 3.5 to generate questions from the headings and using the corresponding paragraphs as answers. This dataset is still under development and we believe that approximately 70% of these question answer pairs are factual correct. Thirdly, we used StackExchange to extract question-answer pairs, taking the top-rated question from five categories: Academia, Bioinformatics, Biology, Fitness, and Health. Additionally, we used a dataset from ChatDoctor consisting of 200,000 question-answer pairs, available at https://github.com/Kent0n-Li/ChatDoctor. Model Usage To evaluate the performance of the model on a specific dataset, you can use the Hugging Face Transformers library's built-in evaluation scripts. Please refer to the evaluation guide for more information. Inference You can use the model for inference tasks like question-answering and medical dialogues using the Hugging Face Transformers library. Here's an example of how to use the model for a question-answering task: Limitations The model may not perform effectively outside the scope of the medical domain. The training data primarily targets the knowledge level of medical students, which may result in limitations when addressing the needs of board-certified physicians. The model has not been tested in real-world applications, so its efficacy and accuracy are currently unknown. It should never be used as a substitute for a doctor's opinion and must be treated as a research tool only.

Read more

$-/run

2.7K

Huggingface

medalpaca-13b

medalpaca-13b

MedAlpaca 13b Table of Contents Model Description Architecture Training DataModel UsageLimitations Model Description Architecture medalpaca-13b is a large language model specifically fine-tuned for medical domain tasks. It is based on LLaMA (Large Language Model Meta AI) and contains 13 billion parameters. The primary goal of this model is to improve question-answering and medical dialogue tasks. Training Data The training data for this project was sourced from various resources. Firstly, we used Anki flashcards to automatically generate questions, from the front of the cards and anwers from the back of the card. Secondly, we generated medical question-answer pairs from Wikidoc. We extracted paragraphs with relevant headings, and used Chat-GPT 3.5 to generate questions from the headings and using the corresponding paragraphs as answers. This dataset is still under development and we believe that approximately 70% of these question answer pairs are factual correct. Thirdly, we used StackExchange to extract question-answer pairs, taking the top-rated question from five categories: Academia, Bioinformatics, Biology, Fitness, and Health. Additionally, we used a dataset from ChatDoctor consisting of 200,000 question-answer pairs, available at https://github.com/Kent0n-Li/ChatDoctor. Model Usage To evaluate the performance of the model on a specific dataset, you can use the Hugging Face Transformers library's built-in evaluation scripts. Please refer to the evaluation guide for more information. Inference You can use the model for inference tasks like question-answering and medical dialogues using the Hugging Face Transformers library. Here's an example of how to use the model for a question-answering task: Limitations The model may not perform effectively outside the scope of the medical domain. The training data primarily targets the knowledge level of medical students, which may result in limitations when addressing the needs of board-certified physicians. The model has not been tested in real-world applications, so its efficacy and accuracy are currently unknown. It should never be used as a substitute for a doctor's opinion and must be treated as a research tool only.

Read more

$-/run

1.3K

Huggingface

medalpaca-lora-7b-8bit

medalpaca-lora-7b-8bit

MedAlpaca LoRA 7b 8bit Table of Contents Model Description Architecture Training DataModel UsageLimitations Model Description Architecture medalpaca-lora-7b-8bit is a large language model specifically fine-tuned for medical domain tasks. It is based on LLaMA (Large Language Model Meta AI) and contains 7 billion parameters. The primary goal of this model is to improve question-answering and medical dialogue tasks. It was trained using LoRA and quantized, to reduce memory footprint. Training Data The training data for this project was sourced from various resources. Firstly, we used Anki flashcards to automatically generate questions, from the front of the cards and anwers from the back of the card. Secondly, we generated medical question-answer pairs from Wikidoc. We extracted paragraphs with relevant headings, and used Chat-GPT 3.5 to generate questions from the headings and using the corresponding paragraphs as answers. This dataset is still under development and we believe that approximately 70% of these question answer pairs are factual correct. Thirdly, we used StackExchange to extract question-answer pairs, taking the top-rated question from five categories: Academia, Bioinformatics, Biology, Fitness, and Health. Additionally, we used a dataset from ChatDoctor consisting of 200,000 question-answer pairs, available at https://github.com/Kent0n-Li/ChatDoctor. Limitations The model may not perform effectively outside the scope of the medical domain. The training data primarily targets the knowledge level of medical students, which may result in limitations when addressing the needs of board-certified physicians. The model has not been tested in real-world applications, so its efficacy and accuracy are currently unknown. It should never be used as a substitute for a doctor's opinion and must be treated as a research tool only.

Read more

$-/run

0

Huggingface

medalpaca-lora-30b-8bit

medalpaca-lora-30b-8bit

MedAlpaca LoRA 30b 8bit Table of Contents Model Description Architecture Training DataModel UsageLimitations Model Description Architecture medalpaca-lora-30b-8bit is a large language model specifically fine-tuned for medical domain tasks. It is based on LLaMA (Large Language Model Meta AI) and contains 7 billion parameters. The primary goal of this model is to improve question-answering and medical dialogue tasks. It was trained using LoRA and quantized, to reduce memory footprint. Training Data The training data for this project was sourced from various resources. Firstly, we used Anki flashcards to automatically generate questions, from the front of the cards and anwers from the back of the card. Secondly, we generated medical question-answer pairs from Wikidoc. We extracted paragraphs with relevant headings, and used Chat-GPT 3.5 to generate questions from the headings and using the corresponding paragraphs as answers. This dataset is still under development and we believe that approximately 70% of these question answer pairs are factual correct. Thirdly, we used StackExchange to extract question-answer pairs, taking the top-rated question from five categories: Academia, Bioinformatics, Biology, Fitness, and Health. Additionally, we used a dataset from ChatDoctor consisting of 200,000 question-answer pairs, available at https://github.com/Kent0n-Li/ChatDoctor. Limitations The model may not perform effectively outside the scope of the medical domain. The training data primarily targets the knowledge level of medical students, which may result in limitations when addressing the needs of board-certified physicians. The model has not been tested in real-world applications, so its efficacy and accuracy are currently unknown. It should never be used as a substitute for a doctor's opinion and must be treated as a research tool only.

Read more

$-/run

0

Huggingface

Similar creators