Kadirnar

Rank:

Average Model Cost: $0.0000

Number of Runs: 21,628

Models by this creator

DreamShaper_v6

DreamShaper_v6

kadirnar

The DreamShaper_v6 model is a platform that allows users to create detailed and immersive virtual reality (VR) experiences. It provides tools and features for designing, editing, and customizing VR environments, as well as adding interactive elements and functionalities. The model enables users to easily create and share their VR projects, making it a versatile tool for developers and content creators in the VR industry.

Read more

$-/run

13.2K

Huggingface

timm_model_list

timm_model_list

Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723 BEiT - https://arxiv.org/abs/2106.08254 Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 Bottleneck Transformers - https://arxiv.org/abs/2101.11605 CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239 CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399 CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803 ConvNeXt - https://arxiv.org/abs/2201.03545 ConvNeXt-V2 - http://arxiv.org/abs/2301.00808 ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697 CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929 DeiT - https://arxiv.org/abs/2012.12877 DeiT-III - https://arxiv.org/pdf/2204.07118.pdf DenseNet - https://arxiv.org/abs/1608.06993 DLA - https://arxiv.org/abs/1707.06484 DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629 EdgeNeXt - https://arxiv.org/abs/2206.10589 EfficientFormer - https://arxiv.org/abs/2206.01191 EfficientNet (MBConvNet Family) EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html EfficientNet V2 - https://arxiv.org/abs/2104.00298 FBNet-C - https://arxiv.org/abs/1812.03443 MixNet - https://arxiv.org/abs/1907.09595 MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 MobileNet-V2 - https://arxiv.org/abs/1801.04381 Single-Path NAS - https://arxiv.org/abs/1904.02877 TinyNet - https://arxiv.org/abs/2010.14819 EVA - https://arxiv.org/abs/2211.07636 FlexiViT - https://arxiv.org/abs/2212.08013 GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959 GhostNet - https://arxiv.org/abs/1911.11907 gMLP - https://arxiv.org/abs/2105.08050 GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 Halo Nets - https://arxiv.org/abs/2103.12731 HRNet - https://arxiv.org/abs/1908.07919 Inception-V3 - https://arxiv.org/abs/1512.00567 Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261 Lambda Networks - https://arxiv.org/abs/2102.08602 LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136 MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697 MLP-Mixer - https://arxiv.org/abs/2105.01601 MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244 FBNet-V3 - https://arxiv.org/abs/2006.02049 HardCoRe-NAS - https://arxiv.org/abs/2102.11646 LCNet - https://arxiv.org/abs/2109.15099 MobileViT - https://arxiv.org/abs/2110.02178 MobileViT-V2 - https://arxiv.org/abs/2206.02680 MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526 NASNet-A - https://arxiv.org/abs/1707.07012 NesT - https://arxiv.org/abs/2105.12723 NFNet-F - https://arxiv.org/abs/2102.06171 NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692 PNasNet - https://arxiv.org/abs/1712.00559 PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418 Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302 PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797 RegNet - https://arxiv.org/abs/2003.13678 RegNetZ - https://arxiv.org/abs/2103.06877 RepVGG - https://arxiv.org/abs/2101.03697 ResMLP - https://arxiv.org/abs/2105.03404 ResNet/ResNeXt ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385 ResNeXt - https://arxiv.org/abs/1611.05431 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187 Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932 Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546 ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4 Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507 ResNet-RS - https://arxiv.org/abs/2103.07579 Res2Net - https://arxiv.org/abs/1904.01169 ResNeSt - https://arxiv.org/abs/2004.08955 ReXNet - https://arxiv.org/abs/2007.00992 SelecSLS - https://arxiv.org/abs/1907.00837 Selective Kernel Networks - https://arxiv.org/abs/1903.06586 Sequencer2D - https://arxiv.org/abs/2205.01972 Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725 Swin Transformer - https://arxiv.org/abs/2103.14030 Swin Transformer V2 - https://arxiv.org/abs/2111.09883 Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112 TResNet - https://arxiv.org/abs/2003.13630 Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/abs/2104.13840 Visformer - https://arxiv.org/abs/2104.12533 Vision Transformer - https://arxiv.org/abs/2010.11929 VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112 VovNet V2 and V1 - https://arxiv.org/abs/1911.06667 Xception - https://arxiv.org/abs/1610.02357 Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611 Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611 XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681

Read more

$-/run

0

Huggingface

Similar creators